July  2010, 28(3): 1291-1298. doi: 10.3934/dcds.2010.28.1291

Nodal geometry of graphs on surfaces

1. 

Department of Mathematics, Harvard University, Cambridge, MA 02138, United States, United States, United States

2. 

Einstein Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel

Received  April 2010 Published  April 2010

We prove two mixed versions of the Discrete Nodal Theorem of Davieset. al. [3] for bounded degree graphs, and for three-connected graphs of fixed genus$g$. Using this we can show that for a three-connected graphsatisfying a certain volume-growth condition, the multiplicity ofthe $n$th Laplacian eigenvalue is at most $2[ 6(n-1) + 15(2g-2)]^2$. Our results hold for any Schrödinger operator, not just the Laplacian.
Citation: Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291
[1]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

[2]

Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657

[3]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

[4]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[5]

Alvaro Sandroni, Eran Shmaya. A prequential test for exchangeable theories. Journal of Dynamics and Games, 2014, 1 (3) : 497-505. doi: 10.3934/jdg.2014.1.497

[6]

Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 881-891. doi: 10.3934/jimo.2018075

[7]

Onur Teymur, Sarah Filippi. A Bayesian nonparametric test for conditional independence. Foundations of Data Science, 2020, 2 (2) : 155-172. doi: 10.3934/fods.2020009

[8]

Sébastien Gautier, Lubomir Gavrilov, Iliya D. Iliev. Perturbations of quadratic centers of genus one. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 511-535. doi: 10.3934/dcds.2009.25.511

[9]

Peter K. Friz, I. Kukavica, James C. Robinson. Nodal parametrisation of analytic attractors. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 643-657. doi: 10.3934/dcds.2001.7.643

[10]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[11]

Josep M. Miret, Jordi Pujolàs, Nicolas Thériault. Trisection for supersingular genus $2$ curves in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 375-387. doi: 10.3934/amc.2014.8.375

[12]

Steve Limburg, David Grant, Mahesh K. Varanasi. Higher genus universally decodable matrices (UDMG). Advances in Mathematics of Communications, 2014, 8 (3) : 257-270. doi: 10.3934/amc.2014.8.257

[13]

David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009

[14]

Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617

[15]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems and Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[16]

Segismundo S. Izquierdo, Luis R. Izquierdo. "Test two, choose the better" leads to high cooperation in the Centipede game. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021018

[17]

Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053

[18]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure and Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[19]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems and Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[20]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (156)
  • HTML views (0)
  • Cited by (0)

[Back to Top]