-
Previous Article
Neural fields with sigmoidal firing rates: Approximate solutions
- DCDS Home
- This Issue
-
Next Article
Homogenization and corrector theory for linear transport in random media
On systems of differential equations with extrinsic oscillation
1. | School of Electronic Engineering, Dublin City University, Dublin 9, Ireland |
2. | Departamento de Matemáticas, Universidad Carlos III de Madrid, Madrid, Spain |
3. | Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom |
[1] |
Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 |
[2] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[3] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
[4] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[5] |
Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029 |
[6] |
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 |
[7] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[8] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[9] |
Jacson Simsen, Mariza Stefanello Simsen, José Valero. Convergence of nonautonomous multivalued problems with large diffusion to ordinary differential inclusions. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2347-2368. doi: 10.3934/cpaa.2020102 |
[10] |
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165 |
[11] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[12] |
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 |
[13] |
David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730 |
[14] |
Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118 |
[15] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[16] |
Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517 |
[17] |
Alex Bihlo, James Jackaman, Francis Valiquette. On the development of symmetry-preserving finite element schemes for ordinary differential equations. Journal of Computational Dynamics, 2020, 7 (2) : 339-368. doi: 10.3934/jcd.2020014 |
[18] |
Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283 |
[19] |
Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91 |
[20] |
David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]