-
Previous Article
Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior
- DCDS Home
- This Issue
-
Next Article
A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators
Charge-balanced spike timing control for phase models of spiking neurons
1. | Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States, United States, United States |
[1] |
Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271 |
[2] |
Linghai Zhang, Ping-Shi Wu, Melissa Anne Stoner. Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 1003-1037. doi: 10.3934/dcdsb.2011.16.1003 |
[3] |
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417 |
[4] |
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147 |
[5] |
Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649 |
[6] |
José Antonio Carrillo, Seung-Yeal Ha, Lorenzo Pareschi, Benedetto Piccoli. Special issue on mathematical models for collective dynamics. Networks and Heterogeneous Media, 2020, 15 (3) : i-i. doi: 10.3934/nhm.2020020 |
[7] |
Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221 |
[8] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[9] |
Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881 |
[10] |
Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167 |
[11] |
Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649 |
[12] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[13] |
Sue Ann Campbell, Ilya Kobelevskiy. Phase models and oscillators with time delayed coupling. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2653-2673. doi: 10.3934/dcds.2012.32.2653 |
[14] |
Alessia Berti, Claudio Giorgi, Angelo Morro. Mathematical modeling of phase transition and separation in fluids: A unified approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1889-1909. doi: 10.3934/dcdsb.2014.19.1889 |
[15] |
Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425 |
[16] |
Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043 |
[17] |
Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[18] |
Wenxiang Liu, Thomas Hillen, H. I. Freedman. A mathematical model for M-phase specific chemotherapy including the $G_0$-phase and immunoresponse. Mathematical Biosciences & Engineering, 2007, 4 (2) : 239-259. doi: 10.3934/mbe.2007.4.239 |
[19] |
Shui-Nee Chow, Yongfeng Li. Model reference control for SIRS models. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 675-697. doi: 10.3934/dcds.2009.24.675 |
[20] |
Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]