Advanced Search
Article Contents
Article Contents

Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations

Abstract Related Papers Cited by
  • Schrödinger / Gross-Pitaevskii equations (NLS/GP) with a focusing (attractive) nonlinear potential and symmetric double well linear potential. NLS/GP plays a central role in the modeling of nonlinear optical and mean-field quantum many-body phenomena. It is known that there is a critical $L^2$ norm (optical power / particle number) at which there is a symmetry breaking bifurcation of the ground state. We study the rich dynamical behavior near the symmetry breaking point. The source of this behavior in the full Hamiltonian PDE is related to the dynamics of a finite-dimensional Hamiltonian reduction. We derive this reduction, analyze a part of its phase space and prove a shadowing theorem on the persistence of solutions, with oscillating mass-transport between wells, on very long, but finite, time scales within the full NLS/GP. The infinite time dynamics for NLS/GP are expected to depart, from the finite dimensional reduction, due to resonant coupling of discrete and continuum / radiation modes.
    Mathematics Subject Classification: Primary: 35Q55, 35Q60.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint