• Previous Article
    Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles
  • DCDS Home
  • This Issue
  • Next Article
    Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations
December  2010, 28(4): 1555-1588. doi: 10.3934/dcds.2010.28.1555

Stable and unstable periodic orbits in complex networks of spiking neurons with delays


Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States


Network Dynamics Group, Max Planck Institute for Dynamics & Self-Organization (MPIDS), Göttingen, Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Department of Physics, Georg August University, Göttingen, Germany

Received  October 2009 Revised  February 2010 Published  June 2010

Is a periodic orbit underlying a periodic pattern of spikes in a heterogeneous neural network stable or unstable? We analytically assess this question in neural networks with delayed interactions by explicitly studying the microscopic time evolution of perturbations. We show that in purely inhibitorily coupled networks of neurons with normal dissipation (concave rise function), such as common leaky integrate-and-fire neurons, all orbits underlying non-degenerate periodic spike patterns are stable. In purely inhibitorily coupled networks with strongly connected topology and normal dissipation (strictly concave rise function), they are even asymptotically stable. In contrast, for the same type of individual neurons, all orbits underlying such patterns are unstable if the coupling is excitatory. For networks of neurons with anomalous dissipation ((strictly) convex rise function), the reverse statements hold. For the stable dynamics, we give an analytical lower bound on the local size of the basin of attraction. Numerical simulations of networks with different integrate-and-fire type neurons illustrate our results.
Citation: Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374


Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6047-6056. doi: 10.3934/dcdsb.2021001


Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655


Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233-256. doi: 10.3934/mbe.2014.11.233


Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056


Ndolane Sene. Fractional input stability and its application to neural network. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049


Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420


Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115


Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761


Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505


Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial and Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385


Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008


K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573


Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397


Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367


Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457


Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1429-1446. doi: 10.3934/dcdss.2020370


Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517


Sanjay K. Mazumdar, Cheng-Chew Lim. A neural network based anti-skid brake system. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 321-338. doi: 10.3934/dcds.1999.5.321


Léo Bois, Emmanuel Franck, Laurent Navoret, Vincent Vigon. A neural network closure for the Euler-Poisson system based on kinetic simulations. Kinetic and Related Models, 2022, 15 (1) : 49-89. doi: 10.3934/krm.2021044

2020 Impact Factor: 1.392


  • PDF downloads (69)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]