Advanced Search
Article Contents
Article Contents

Analytical proof of space-time chaos in Ginzburg-Landau equations

Abstract Related Papers Cited by
  • We prove that the attractor of the 1D quintic complex Ginzburg-Landau equation with a broken phase symmetry has strictly positive space-time entropy for an open set of parameter values. The result is obtained by studying chaotic oscillations in grids of weakly interacting solitons in a class of Ginzburg-Landau type equations. We provide an analytic proof for the existence of two-soliton configurations with chaotic temporal behavior, and construct solutions which are closed to a grid of such chaotic soliton pairs, with every pair in the grid well spatially separated from the neighboring ones for all time. The temporal evolution of the well-separated multi-soliton structures is described by a weakly coupled lattice dynamical system (LDS) for the coordinates and phases of the solitons. We develop a version of normal hyperbolicity theory for the weakly coupled LDS's with continuous time and establish for them the existence of space-time chaotic patterns similar to the Sinai-Bunimovich chaos in discrete-time LDS's. While the LDS part of the theory may be of independent interest, the main difficulty addressed in the paper concerns with lifting the space-time chaotic solutions of the LDS back to the initial PDE. The equations we consider here are space-time autonomous, i.e. we impose no spatial or temporal modulation which could prevent the individual solitons in the grid from drifting towards each other and destroying the well-separated grid structure in a finite time. We however manage to show that the set of space-time chaotic solutions for which the random soliton drift is arrested is large enough, so the corresponding space-time entropy is strictly positive.
    Mathematics Subject Classification: 35Q30, 37L30.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint