-
Previous Article
Nodal minimal partitions in dimension $3$
- DCDS Home
- This Issue
-
Next Article
Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability
On the local solvability of the Nirenberg problem on $\mathbb S^2$
1. | Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, United States |
2. | Department of Mathematics, Rutgers University, Hill Center, 110 Frelinghuysen Rd., Piscataway, NJ 08854 |
[1] |
Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148 |
[2] |
Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857 |
[3] |
G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. |
[4] |
Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074 |
[5] |
Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14 (3) : 445-469. doi: 10.3934/nhm.2019018 |
[6] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[7] |
Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096 |
[8] |
Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure and Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563 |
[9] |
Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451 |
[10] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[11] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[12] |
Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure and Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673 |
[13] |
Pak Tung Ho, Rong Tang. Fractional Yamabe solitons and fractional Nirenberg problem. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3215-3234. doi: 10.3934/cpaa.2021103 |
[14] |
L. R. Nunes, J. R. Dos Santos Filho. On local solvability for a class of generalized Mizohata equations. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2323-2340. doi: 10.3934/cpaa.2021081 |
[15] |
Brittany Froese Hamfeldt. Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature. Communications on Pure and Applied Analysis, 2018, 17 (2) : 671-707. doi: 10.3934/cpaa.2018036 |
[16] |
Manil T. Mohan, Sivaguru S. Sritharan. New methods for local solvability of quasilinear symmetric hyperbolic systems. Evolution Equations and Control Theory, 2016, 5 (2) : 273-302. doi: 10.3934/eect.2016005 |
[17] |
Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445 |
[18] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059 |
[19] |
Hichem Chtioui, Hichem Hajaiej, Marwa Soula. The scalar curvature problem on four-dimensional manifolds. Communications on Pure and Applied Analysis, 2020, 19 (2) : 723-746. doi: 10.3934/cpaa.2020034 |
[20] |
Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]