June  2010, 28(2): 659-664. doi: 10.3934/dcds.2010.28.659

A Liouville problem for the Sigma-2 equation

1. 

Princeton University, Department of Mathematics, Princeton, NJ 08540, United States

2. 

University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195, United States

Received  February 2010 Revised  April 2010 Published  April 2010

We show that any global convex solution to the Sigma-2 equation must be quadratic.
Citation: Sun-Yung Alice Chang, Yu Yuan. A Liouville problem for the Sigma-2 equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 659-664. doi: 10.3934/dcds.2010.28.659
[1]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[2]

Fang Tian, Zi-Long Liu. Improved approximating $2$-CatSP for $\sigma\geq 0.50$ with an unbalanced rounding matrix. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1249-1265. doi: 10.3934/jimo.2016.12.1249

[3]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[4]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[5]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[6]

Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108

[7]

Huyuan Chen, Hichem Hajaiej. Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3373-3393. doi: 10.3934/cpaa.2021109

[8]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[9]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[10]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[11]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[12]

Sabyasachi Karati, Palash Sarkar. Connecting Legendre with Kummer and Edwards. Advances in Mathematics of Communications, 2019, 13 (1) : 41-66. doi: 10.3934/amc.2019003

[13]

M'Hammed Boulagouaz, André Leroy. ($\sigma,\delta$)-codes. Advances in Mathematics of Communications, 2013, 7 (4) : 463-474. doi: 10.3934/amc.2013.7.463

[14]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[15]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[16]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[17]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[18]

Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905

[19]

Pu-Zhao Kow, Masato Kimura. The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021167

[20]

Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4983-5001. doi: 10.3934/dcdsb.2019041

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (132)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]