-
Previous Article
Analysis on the junctions of domain walls
- DCDS Home
- This Issue
-
Next Article
Hylomorphic solitons on lattices
Partial regularity for elliptic equations
1. | Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071, China |
2. | Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia |
[1] |
Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981 |
[2] |
Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391 |
[3] |
Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033 |
[4] |
Teresa Isernia, Chiara Leone, Anna Verde. Partial regularity result for non-autonomous elliptic systems with general growth. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4271-4305. doi: 10.3934/cpaa.2021160 |
[5] |
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 |
[6] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[7] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[8] |
Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 |
[9] |
Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495 |
[10] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[11] |
Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007 |
[12] |
Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147 |
[13] |
Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69 |
[14] |
Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 |
[15] |
Alessandro Ferriero. A direct proof of the Tonelli's partial regularity result. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2089-2099. doi: 10.3934/dcds.2012.32.2089 |
[16] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[17] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1783-1820. doi: 10.3934/cpaa.2021041 |
[18] |
Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147 |
[19] |
Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631 |
[20] |
F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]