-
Previous Article
Existence of solutions for a Boussinesq system on the half line and on a finite interval
- DCDS Home
- This Issue
- Next Article
Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain |
2. | Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona |
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables," Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992. |
[2] |
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP, (freely available from http://pari.math.u-bordeaux.fr/). |
[3] |
J. Casasayas, A. Nunes and N. Tufillaro, Swinging Atwood's machine, J. Physique, 51 (1990), 1693-1702. |
[4] |
J. Martinet and J-P. Ramis, Théorie de Galois différentielle et resommation, "Computer Algebra and Differential Equations," 117-214, E.Tournier, Ed., Academic Press, London, 1989. |
[5] |
R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. |
[6] |
R. Martínez and C. Simó, Efficient numerical implementation of integrability criteria based on high order variational equations, Preprint, 2010. |
[7] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems," Progress in Mathematics vol. 179, Birkhäuser, 1999. |
[8] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, 8 (2001), 33-96. |
[9] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian Obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112. |
[10] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Scient. Éc. Norm. Sup. 4$^e$ série, 40 (2007), 845-884. |
[11] |
J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135.
doi: doi:10.1006/jdeq.1996.0113. |
[12] |
J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill's Problem, Ergodic Theory and Dynamical Systems, 25 (2005), 1237-1256.
doi: doi:10.1017/S0143385704001038. |
[13] |
O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood's Machine: Experimental and numerical results, theoretical study, Physica D, 239 (2010), 1067-1081.
doi: doi:10.1016/j.physd.2010.02.017. |
[14] |
L. Schlesinger, "Handbuch der Theorie der Linearen Differentialgleichungen," Reprint. Biblioteca Mathematica Teubneriana, Band 31, Johnson Reprint Corp., New York - London, 1968. |
[15] |
N. Tufillaro, Integrable motion of a swinging Atwood's machine, Am. J. Phys., 54 (1986), 142-143.
doi: doi:10.1119/1.14710. |
[16] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189.
doi: doi:10.1007/BF01081586. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables," Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992. |
[2] |
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP, (freely available from http://pari.math.u-bordeaux.fr/). |
[3] |
J. Casasayas, A. Nunes and N. Tufillaro, Swinging Atwood's machine, J. Physique, 51 (1990), 1693-1702. |
[4] |
J. Martinet and J-P. Ramis, Théorie de Galois différentielle et resommation, "Computer Algebra and Differential Equations," 117-214, E.Tournier, Ed., Academic Press, London, 1989. |
[5] |
R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. |
[6] |
R. Martínez and C. Simó, Efficient numerical implementation of integrability criteria based on high order variational equations, Preprint, 2010. |
[7] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems," Progress in Mathematics vol. 179, Birkhäuser, 1999. |
[8] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, 8 (2001), 33-96. |
[9] |
J. J. Morales-Ruiz and J.-P. Ramis, Galoisian Obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112. |
[10] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Scient. Éc. Norm. Sup. 4$^e$ série, 40 (2007), 845-884. |
[11] |
J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135.
doi: doi:10.1006/jdeq.1996.0113. |
[12] |
J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill's Problem, Ergodic Theory and Dynamical Systems, 25 (2005), 1237-1256.
doi: doi:10.1017/S0143385704001038. |
[13] |
O. Pujol, J.-P. Pérez, J.-P. Ramis, C. Simó, S. Simon and J.-A. Weil, Swinging Atwood's Machine: Experimental and numerical results, theoretical study, Physica D, 239 (2010), 1067-1081.
doi: doi:10.1016/j.physd.2010.02.017. |
[14] |
L. Schlesinger, "Handbuch der Theorie der Linearen Differentialgleichungen," Reprint. Biblioteca Mathematica Teubneriana, Band 31, Johnson Reprint Corp., New York - London, 1968. |
[15] |
N. Tufillaro, Integrable motion of a swinging Atwood's machine, Am. J. Phys., 54 (1986), 142-143.
doi: doi:10.1119/1.14710. |
[16] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189.
doi: doi:10.1007/BF01081586. |
[1] |
Primitivo Acosta-Humánez, David Blázquez-Sanz. Non-integrability of some hamiltonians with rational potentials. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 265-293. doi: 10.3934/dcdsb.2008.10.265 |
[2] |
Andrew N. W. Hone, Michael V. Irle. On the non-integrability of the Popowicz peakon system. Conference Publications, 2009, 2009 (Special) : 359-366. doi: 10.3934/proc.2009.2009.359 |
[3] |
Juan J. Morales-Ruiz, Sergi Simon. On the meromorphic non-integrability of some $N$-body problems. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1225-1273. doi: 10.3934/dcds.2009.24.1225 |
[4] |
Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299 |
[5] |
Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645 |
[6] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[7] |
Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965 |
[8] |
Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 |
[9] |
Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177 |
[10] |
Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589 |
[11] |
Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43 |
[12] |
Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257 |
[13] |
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124 |
[14] |
R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203 |
[15] |
Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3233-3248. doi: 10.3934/dcdss.2020342 |
[16] |
Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227 |
[17] |
Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure and Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012 |
[18] |
Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059 |
[19] |
Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597 |
[20] |
Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]