Citation: |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084. |
[2] |
R. A. Bagnold, The movement of desert sand, Proceedings of the Royal Society of London A, 157 (1936), 594-620.doi: 10.1098/rspa.1936.0218. |
[3] |
G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasilinear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323.doi: 10.1137/S0036141000369344. |
[4] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: I-species persistence, J. Math Biol., 51 (2005), 75-113.doi: 10.1007/s00285-004-0313-3. |
[5] |
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: Ii-biological invasions and pulsating travelling fronts, J. Math Pures Appl., 84 (2005), 1101-1146.doi: 10.1016/j.matpur.2004.10.006. |
[6] |
P. Blondeau, Mechanics of coastal forms, Ann. Rev. Fluids Mech., 33 (2001), 339-370.doi: 10.1146/annurev.fluid.33.1.339. |
[7] |
M. Bostan, Periodic solutions for evolution equations, Elec. J. Diff. Equations. Monograph, 3 (2002), 1-41. |
[8] |
F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions, J. Math. Anal. Appl., 339 (2008), 384-398.doi: 10.1016/j.jmaa.2007.06.052. |
[9] |
G. P. Dawson, B. Johns and R. L. Soulsby, A numerical model of shallow-water flow over topography, in "Physical Oceanography of Coastal and Shelf Seas," Elsevier Oceanography Series, 35 (1983), 267-320.doi: 10.1016/S0422-9894(08)70504-X. |
[10] |
H. J. De Vriend, "Steady Flow in Shallow Channel Bends," Ph.D. thesis, Delft Univ. of Technology, 1981. |
[11] |
F. Engelund and E. Hansen, "Investigation of Flow in Alluvial Streams," Tech. Report 9, Tech. Univ. Denmark Hydraulic Lab. Bull., 1966. |
[12] |
B. W. Flemming, The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes, Marine Sandwave Dynamics, International Workshop, March 23-24 2000 (A. Trentesaux and T. Garlan, eds.), University of Lille 1, France, 2000. |
[13] |
E. Frénod, P. A. Raviart and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic field, J. Math. Pures et Appl., 80 (2001), 815-843.doi: 10.1016/S0021-7824(01)01215-6. |
[14] |
P. E. Gadd, W. Lavelle and D. J. P. Swift, Estimates of sand transport on the New York shelf using near-bottom current meter observations, J. Sed. Petrol., 48 (1978), 239-252. |
[15] |
A. Hansbo, Error estimates for the numerical solution of a time-periodic linear parabolic problem, BIT, 31 (1991), 664-685.doi: 10.1007/BF01933180. |
[16] |
D. Idier, "Dunes et Bancs de Sables du Plateau Continental: Observations in-situ et Modélisation Numérique," Ph.D. thesis, INP Toulouse, France 2002. |
[17] |
D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation, Geophysical Research Letters, 31 (2004), 1-5.doi: 10.1029/2004GL019969. |
[18] |
B. Johns, R. Soulsby and T. Chesher, The modelling of sand waves evolution resulting from suspended and bed load transport of sediment, J. Hydraul. Reseach, 28 (1990), 355-374.doi: 10.1080/00221689009499075. |
[19] |
J. Kennedy, The formation of sediment ripples, dunes and antidunes, Ann. Rev. Fluids Mech., 1 (1969), 147-168.doi: 10.1146/annurev.fl.01.010169.001051. |
[20] |
M. Kono, Remarks on periodic solutions of linear parabolic differential equations of the second order, Proc. Japan Acad., 42 (1966), 5-9.doi: 10.3792/pja/1195522166. |
[21] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type," AMS Translation of Mathematical Monographs 23, 1968. |
[22] |
J.-L. Lions, Remarques sur les équations différentielles ordinaires, Osaka Math. J., 15 (1963), 131-142. |
[23] |
E. Meyer-Peter and R. Müller, Formulas for bed-load transport, The Second Meeting of the International Association for Hydraulic Structures, Appendix 2, (1948), 39-44. |
[24] |
G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion, preprint. |
[25] |
G. Nadin, Reaction-diffusion equations in space-time periodic media, C. R. Acad. Sci. Paris Ser. I, 345 (2007), 489-493. |
[26] |
G. Namah and J.-M. Roquejoffre, Convergence to periodic fronts in a class of semilinearparabolic equations, Nonlinear Diff. Equ. Appl., 4 (1997), 521-536. |
[27] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043. |
[28] |
J. R. Norris, Long-time behaviour of heat flow: Global estimates and exact asymptotics, Arch. Rat. Mech. Anal., 140 (1997), 161-195.doi: 10.1007/s002050050063. |
[29] |
E. Pardoux, Homogenization of linear and semilinear second order parabolic pdes with periodic coefficients: A probolist approach, J. Funct. Anal., 167 (1999), 498-520.doi: 10.1006/jfan.1999.3441. |
[30] |
D. G. Park and H. Tanabe, On the asymptotic behavior of solutions of linear parabolic equations in $l^1$ space, Annali Delle Scuola Normale superiore di Pisa Classe di Scienze, 14 (1987), 587-611. |
[31] |
F. Petitta, Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data, Elec. J. Diff. Equ., 2008 (2008), 1-10. |
[32] |
H. Tanabe, Convergence to a stationary state of the solution of some kind of differential equations in a banach space, Proc. Japan Acad., 37 (1961), 127-130.doi: 10.3792/pja/1195523776. |
[33] |
L. C. Van Rijn, "Handbook on Sediment Transport by Current and Waves," Tech. Report H461:12.1-12.27, Delft Hydraulics, 1989. |