-
Previous Article
Periodic solutions of parabolic problems with hysteresis on the boundary
- DCDS Home
- This Issue
-
Next Article
Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment
Linearization of cohomology-free vector fields
1. | UFR de Mathématiques, Université de Lille 1 (USTL), F59655 Villeneuve d'Asq Cedex |
2. | Centro de Matemática, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay |
References:
[1] |
A. Avila and A. Kocsard, Cohomological equations and invariant distributions for minimal circle diffeomorphisms, arXiv:1002.3392, (2010). |
[2] |
J. C. Baez and S. Sawin, Functional integration on spaces of connections, J. Funct. Anal., 150 (1997), 1-26.
doi: 10.1006/jfan.1997.3108. |
[3] |
K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., 83 (1977), 831-879.
doi: 10.1090/S0002-9904-1977-14320-6. |
[4] |
W. Chen and M. Y. Chi, Hypoelliptic vector fields and almost periodic motions on the torus $T^n$, Comm. Partial Differential Equations, 25 (2000), 337-354.
doi: 10.1080/03605300008821516. |
[5] |
D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. |
[6] |
D. Damjanović and A. Katok, Local rigidity of actions of higher rank abelian groups and KAM method, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 142-154 (electronic).
doi: 10.1090/S1079-6762-04-00139-8. |
[7] |
D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\bb R^k$ actions, Discrete Contin. Dyn. Syst., 13 (2005), 985-1005.
doi: 10.3934/dcds.2005.13.985. |
[8] |
D. Damjanović and A. Katok, Local rigidity of restrictions of Weyl chamber flows, C. R. Math. Acad. Sci. Paris, 344 (2007), 503-508. |
[9] |
R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 91-94. |
[10] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[11] |
L. Flaminio and G. Forni, On the cohomological equation for nilflows, J. Mod. Dyn., 1 (2007), 37-60. |
[12] |
G. Forni, On the Greenfield-Wallach and Katok conjectures in dimension three, in "Geometric and Probabilistic Structures in Dynamics," Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, (2008), 197-213. |
[13] |
S. J. Greenfield and N. R. Wallach, Globally hypoelliptic vector fields, Topology, 12 (1973), 247-254.
doi: 10.1016/0040-9383(73)90011-6. |
[14] |
V. Guillemin and D. Kazhdan, On the cohomology of certain dynamical systems, Topology, 19 (1980), 291-299.
doi: 10.1016/0040-9383(80)90014-2. |
[15] |
V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved $n$-manifolds, in "Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979)," Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., (1980), 153-180. |
[16] |
M. R. Herman, $L^2$ regularity of measurable solutions of a finite-difference equation of the circle, Ergodic Theory Dynam. Systems, 24 (2004), 1277-1281.
doi: 10.1017/S0143385704000409. |
[17] |
S. Hurder, Problems on rigidity of group actions and cocycles, Ergodic Theory Dynam. Systems, 5 (1985), 473-484.
doi: 10.1017/S0143385700003084. |
[18] | |
[19] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, in "Smooth Ergodic Theory and its Applications (Seattle, WA, 1999)," Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, (2001), 107-173. (In collaboration with E. A. Robinson, Jr.). |
[20] |
A. Katok, Combinatorial constructions in ergodic theory and dynamics, University Lecture Series, vol. 30, American Mathematical Society, Providence, RI, 2003. |
[21] |
A. Kocsard, Cohomologically rigid vector fields: The Katok conjecture in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1165-1182.
doi: 10.1016/j.anihpc.2008.07.005. |
[22] |
R. U. Luz and N. M. dos Santos, Cohomology-free diffeomorphisms of low-dimension tori, Ergodic Theory Dynam. Systems, 18 (1998), 985-1006.
doi: 10.1017/S0143385798108222. |
[23] |
S. Matsumoto, The parameter rigid flows on 3-manifolds, in "Foliations, Geometry, and Topology: Paul Schweitzer Festschrift," Contemp. Math., vol. 498, Amer. Math. Soc., Providence, RI, (2009), 135-139. |
[24] |
D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn., 1 (2007), 61-92. |
[25] |
F. R. Hertz and J. R. Hertz, Cohomology free systems and the first Betti number, Discrete Contin. Dyn. Syst., 15 (2006), 193-196.
doi: 10.3934/dcds.2006.15.193. |
[26] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: 10.2140/gt.2007.11.2117. |
show all references
References:
[1] |
A. Avila and A. Kocsard, Cohomological equations and invariant distributions for minimal circle diffeomorphisms, arXiv:1002.3392, (2010). |
[2] |
J. C. Baez and S. Sawin, Functional integration on spaces of connections, J. Funct. Anal., 150 (1997), 1-26.
doi: 10.1006/jfan.1997.3108. |
[3] |
K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., 83 (1977), 831-879.
doi: 10.1090/S0002-9904-1977-14320-6. |
[4] |
W. Chen and M. Y. Chi, Hypoelliptic vector fields and almost periodic motions on the torus $T^n$, Comm. Partial Differential Equations, 25 (2000), 337-354.
doi: 10.1080/03605300008821516. |
[5] |
D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. |
[6] |
D. Damjanović and A. Katok, Local rigidity of actions of higher rank abelian groups and KAM method, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 142-154 (electronic).
doi: 10.1090/S1079-6762-04-00139-8. |
[7] |
D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\bb R^k$ actions, Discrete Contin. Dyn. Syst., 13 (2005), 985-1005.
doi: 10.3934/dcds.2005.13.985. |
[8] |
D. Damjanović and A. Katok, Local rigidity of restrictions of Weyl chamber flows, C. R. Math. Acad. Sci. Paris, 344 (2007), 503-508. |
[9] |
R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 91-94. |
[10] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[11] |
L. Flaminio and G. Forni, On the cohomological equation for nilflows, J. Mod. Dyn., 1 (2007), 37-60. |
[12] |
G. Forni, On the Greenfield-Wallach and Katok conjectures in dimension three, in "Geometric and Probabilistic Structures in Dynamics," Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, (2008), 197-213. |
[13] |
S. J. Greenfield and N. R. Wallach, Globally hypoelliptic vector fields, Topology, 12 (1973), 247-254.
doi: 10.1016/0040-9383(73)90011-6. |
[14] |
V. Guillemin and D. Kazhdan, On the cohomology of certain dynamical systems, Topology, 19 (1980), 291-299.
doi: 10.1016/0040-9383(80)90014-2. |
[15] |
V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved $n$-manifolds, in "Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979)," Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., (1980), 153-180. |
[16] |
M. R. Herman, $L^2$ regularity of measurable solutions of a finite-difference equation of the circle, Ergodic Theory Dynam. Systems, 24 (2004), 1277-1281.
doi: 10.1017/S0143385704000409. |
[17] |
S. Hurder, Problems on rigidity of group actions and cocycles, Ergodic Theory Dynam. Systems, 5 (1985), 473-484.
doi: 10.1017/S0143385700003084. |
[18] | |
[19] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, in "Smooth Ergodic Theory and its Applications (Seattle, WA, 1999)," Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, (2001), 107-173. (In collaboration with E. A. Robinson, Jr.). |
[20] |
A. Katok, Combinatorial constructions in ergodic theory and dynamics, University Lecture Series, vol. 30, American Mathematical Society, Providence, RI, 2003. |
[21] |
A. Kocsard, Cohomologically rigid vector fields: The Katok conjecture in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1165-1182.
doi: 10.1016/j.anihpc.2008.07.005. |
[22] |
R. U. Luz and N. M. dos Santos, Cohomology-free diffeomorphisms of low-dimension tori, Ergodic Theory Dynam. Systems, 18 (1998), 985-1006.
doi: 10.1017/S0143385798108222. |
[23] |
S. Matsumoto, The parameter rigid flows on 3-manifolds, in "Foliations, Geometry, and Topology: Paul Schweitzer Festschrift," Contemp. Math., vol. 498, Amer. Math. Soc., Providence, RI, (2009), 135-139. |
[24] |
D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn., 1 (2007), 61-92. |
[25] |
F. R. Hertz and J. R. Hertz, Cohomology free systems and the first Betti number, Discrete Contin. Dyn. Syst., 15 (2006), 193-196.
doi: 10.3934/dcds.2006.15.193. |
[26] |
C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: 10.2140/gt.2007.11.2117. |
[1] |
Odo Diekmann, Francesca Scarabel, Rossana Vermiglio. Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2575-2602. doi: 10.3934/dcdss.2020196 |
[2] |
Livio Flaminio, Giovanni Forni. On the cohomological equation for nilflows. Journal of Modern Dynamics, 2007, 1 (1) : 37-60. doi: 10.3934/jmd.2007.1.37 |
[3] |
Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 |
[4] |
James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160 |
[5] |
Fedor Petrov, Zhi-Wei Sun. Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28 (2) : 589-597. doi: 10.3934/era.2020031 |
[6] |
Yunping Jiang. On a question of Katok in one-dimensional case. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209 |
[7] |
Michelle Nourigat, Richard Varro. Conjectures for the existence of an idempotent in $\omega $-polynomial algebras. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1543-1551. doi: 10.3934/dcdss.2011.4.1543 |
[8] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[9] |
El Houcein El Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Thierry de la Rue. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2899-2944. doi: 10.3934/dcds.2017125 |
[10] |
L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183 |
[11] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[12] |
Bassam Fayad, Zhiyuan Zhang. An effective version of Katok's horseshoe theorem for conservative C2 surface diffeomorphisms. Journal of Modern Dynamics, 2017, 11: 425-445. doi: 10.3934/jmd.2017017 |
[13] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[14] |
Sergi Simon. Linearised higher variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[15] |
Min He. A class of integrodifferential equations and applications. Conference Publications, 2005, 2005 (Special) : 386-396. doi: 10.3934/proc.2005.2005.386 |
[16] |
Evelyn Sander, E. Barreto, S.J. Schiff, P. So. Dynamics of noninvertibility in delay equations. Conference Publications, 2005, 2005 (Special) : 768-777. doi: 10.3934/proc.2005.2005.768 |
[17] |
Christian Pötzsche. Dichotomy spectra of triangular equations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 423-450. doi: 10.3934/dcds.2016.36.423 |
[18] |
Wenxiong Chen, Congming Li, Jiuyi Zhu. Fractional equations with indefinite nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1257-1268. doi: 10.3934/dcds.2019054 |
[19] |
Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1 |
[20] |
Alessandro Fonda, Rafael Ortega. Positively homogeneous equations in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 475-482. doi: 10.3934/dcds.2000.6.475 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]