Citation: |
[1] |
P. Bonckaert, Partially hyperbolic fixed points with constraints, Trans. Amer. Math. Soc., 348 (1996), 997-1011.doi: doi:10.1090/S0002-9947-96-01469-9. |
[2] |
P. Bonckaert, P. De Maesschalck and F. Dumortier, Well adapted normal linearization in singular perturbation problems, preprint. |
[3] |
P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point, J. Differential Equations, To appear. doi: doi:10.1016/j.jde.2009.11.009. |
[4] |
P. De Maesschalck and F. Dumortier, Slow-fast Bogdanov-Takens bifurcations, J. Differential Equations, To appear. doi: doi:10.1016/j.jde.2010.07.022. |
[5] |
P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267.doi: doi:10.1016/j.jde.2005.01.004. |
[6] |
P. De Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334.doi: doi:10.1090/S0002-9947-05-03839-0. |
[7] |
P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265-299.doi: doi:10.1017/S0308210506000199. |
[8] |
F. Dumortier, Slow divergence integral and balanced canard solutions, Qualitative Theory and Dynamical Systems, To appear. |
[9] |
F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations, J. Differential Equations, 224 (2006), 296-313.doi: doi:10.1016/j.jde.2005.08.011. |
[10] |
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312-368.doi: doi:10.1006/jdeq.2000.3929. |
[11] |
D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields, Mem. Amer. Math. Soc., 158 (2002). |
[12] |
R. Roussarie, Putting a boundary to the space of Liénard equations, Discrete Contin. Dyn. Syst., 17 (2007), 441-448.doi: doi:10.3934/dcds.2007.17.441. |