\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds

Abstract Related Papers Cited by
  • Let $\mathcal M$ be a smooth Riemannian manifold with the metric $(g_{ij})$ of dimension $n$, and let $H= 1/2 g^{ij}(q)p_ip_j+V(t,q)$ be a smooth Hamiltonian on $\mathcal M$, where $(g^{ij})$ is the inverse matrix of $(g_{ij})$. Under suitable assumptions we prove the existence of heteroclinic orbits of the induced Hamiltonian systems.
    Mathematics Subject Classification: Primary: 37C29, 37J45, 70H05; Secondary: 34C37, 37C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, "Mathematial Methods of Classical Mechanics," 2nd edition, Springer, New York, 1989.

    [2]

    A. V. Bolsinov and A. T. Fomenko, "Integrable Hamiltonian Systems: Geometry, Topology and Classification," Chapman $&$ Hall/CRC, Boca Raton, FL, 2004.

    [3]

    K. Burns and M. Gidea, "Differential Geometry and Topology: With a View to Dynamical Systems," Studies in Advanced Mathematics, Chapman $&$ Hall/CRC, Boca Raton, FL, 2005.

    [4]

    E. Canalias and J. J. Masdemont, Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems, Discrete Contin. Dyn. Syst., 14 (2006), 261-279.

    [5]

    P. C. Carriã and O. H. Miyagaki, Existence of homoclinic solutions for a class of time dependent Hamiltonian systems, J. Math. Anal. Appl., 230 (1999), 157-172.doi: 10.1006/jmaa.1998.6184.

    [6]

    Ch. N. Chen and S. Y. Tzeng, Periodic solutions and their connecting orbits of Hamiltonian systems, J. Diff. Eqns., 177 (2001), 121-145.doi: 10.1006/jdeq.2000.3996.

    [7]

    C. Chen, F. Liu and X. Zhang, Orthogonal separable Hamitonian systems on $T^2$, Science in China Ser. A, 50 (2007), 1725-1737.doi: 10.1007/s11425-007-0156-7.

    [8]

    M. do Carmo, "Riemannian Geometry," Birkhaser, Boston, 1992.

    [9]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Springer, Berlin, 1983.

    [10]

    M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Diff. Eqns., 219 (2005), 375-389.doi: 10.1016/j.jde.2005.06.029.

    [11]

    M. Izydorek and J. Janczewska, Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Diff. Eqns., 238 (2007), 381-393.doi: 10.1016/j.jde.2007.03.013.

    [12]

    J. Milnor, "Morse Theory," Princenton University Press, Princenton, 1963.

    [13]

    J. Moser, "Selected Chapters in the Calculus of Variations," Birkhäuser, Basel, 2003.

    [14]

    P. H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré, 6 (1989), 311-346.

    [15]

    P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.

    [16]

    P. H. Rabinowitz, Connecting orbits for a reversible Hamiltonian systems, Ergodic Theory Dynam. Systems, 20 (2000), 1767-1784.doi: 10.1017/S0143385700000985.

    [17]

    P. H. Rabinowitz, Variational methods for Hamiltonian systems, in "Handbood of Dynamical Sysstems," Vol. 1A, Elsevier, Amsterdam, (2002), 1091-1127.

    [18]

    P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 472-499.doi: 10.1007/BF02571356.

    [19]

    W. Rudin, "Real and Complex Analysis," 3rd edition, McGraw-Hill Book Co., New York, 1987.

    [20]

    A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187 (2001), 25-41.doi: 10.1006/jfan.2001.3798.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return