Advanced Search
Article Contents
Article Contents

Computational hyperbolicity

Abstract Related Papers Cited by
  • Using semihyperbolicity as a basic tool, we provide a general computer assisted method for verifying hyperbolicity of a given set. As a consequence we obtain that the Hénon attractor is hyperbolic for some parameter values.
    Mathematics Subject Classification: Primary: 37D05, 37D20, Secondary: 37M99.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Al-Nayef, P. Diamond, P. Kloeden, V. Kozyakin and A. Pokrovskii, Bi-shadowing and delay equations, Dynam. Stability Systems, 10 (1996), 121-134.


    A. A. Al-Nayef, P. E. Kloeden and A. V. Pokrovskii, Semi-hyperbolic mappings, condensing operators, and neutral delay equations, J. Differential Equations, 137 (1997), 320-339.doi: 10.1006/jdeq.1997.3262.


    Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, Experiment. Math., 16 (2007), 181-188.


    R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations, 15 (1974), 429-458.doi: 10.1016/0022-0396(74)90067-9.


    M. Davis, R. MacKay and A. Sannami, Markov shifts in the Hénon family, Phys. D, 52 (1991), 171-178.doi: 10.1016/0167-2789(91)90119-T.


    S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka and P. Pilarczyk, Quantitative hyperbolicity estimates in one-dimensional dynamics, Nonlinearity, 21 (2008), 1967-1987.doi: 10.1088/0951-7715/21/9/002.


    R. Devaney and Z. Nitecki, Shift automorphisms in the Hénon mapping, Comm. Math. Phys., 67 (1979), 137-146.doi: 10.1007/BF01221362.


    P. Diamond, P. Kloeden, V. Kozyakin and A. Pokrovskii, Semihyperbolic mappings, J. Nonlinear Sci., 5 (1995), 419-431.doi: 10.1007/BF01212908.


    P. Diamond, P. E. Kloeden, V. S. Kozyakin and A. V. Pokrovskii, "Semi-Hyperbolicity and Bi-Shadowing,'' Manuscript.


    Z. Galias and P. Zgliczyński, Infinite-dimensional Krawczyk operator for finding periodic orbits of discrete dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4261-4272.doi: 10.1142/S0218127407019937.


    S. Hruska, A numerical method for constructing the hyperbolic structure of complex Hénon mappings, Found. Comput. Math., 6 (2006), 427-455.doi: 10.1007/s10208-006-0141-2.


    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' Cambridge University Press, Cambridge, 1995.


    M. Mazur, On some useful conditions on hyperbolicity, Trends in Math., 10 (2008), 57-64.


    M. Mazur, J. Tabor and P. Kościelniak, Semi-hyperbolicity and hyperbolicity, Discrete Contin. Dynam. Syst., 20 (2008), 1029-1038.doi: 10.3934/dcds.2008.20.1029.


    M. Mazur, J. Tabor and K. Stolot, Semi-hyperbolicity implies hyperbolicity in the linear case, Proceedings of the Conference "Topological Methods in Differential Equations and Dynamical Systems'' (Krakow-Przegorzaly, 1996), Univ. Iagell. Acta Math., 36 (1998), 121-126.


    M. Mazur, J. Tabor, T. Kułaga and P. KościelniakComputational hyperbolicity group, http://www.im.uj.edu.pl/MarcinMazur/comphyp.


    K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof, Bull. Amer. Math. Soc. (N.S.), 32 (1995), 66-72.


    S. Newhouse, Cone-fields, domination, and hyperbolicity, in "Modern Dynamical Systems and Applications,'' Cambridge Univ. Press, Cambridge, (2004), 419-432.


    K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications,'' Kluwer Academic Publishers, Dordrecht, 2000.


    F. Riesz and B. Sz.-Nagy, "Functional Analysis,'' Frederick Ungar Publishing Co., New York, 1955.

  • 加载中

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint