-
Previous Article
Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds
- DCDS Home
- This Issue
-
Next Article
Analytical and numerical dissipativity for nonlinear generalized pantograph equations
The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations
1. | Institute of Mathematics, AMSS, Academia Sinica, Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, 100190, China, China |
$\partial_t \ u= \sum_{i,j=1}^{m_0}X_i(a_{ij}(x,t)X_j\ u )+X_0 u.$
By choosing a new cut-off function, we simplified and generalized the earlier arguments and proved the $C^{\alpha}$ regularity of weak solutions for more general ultraparabolic equations.
References:
[1] |
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory for Their Sub-Laplacians," Springer-Verlag, Berlin, Heidelberg, 2007. |
[2] |
M. Bramanti, M. C. Cerutti and M. Manfredini, $L^p$ estimates for some ultraparabolic equations, J. Math. Anal. Appl., 200 (1996), 332-354.
doi: 10.1006/jmaa.1996.0209. |
[3] |
C. Cinti, A. Pascucci and S. Polidoro, Pointwise estimates for solutions to a class of non-homogenous Kolmogorov equations, Math. Annal., 340 (2008), 237-264.
doi: 10.1007/s00208-007-0147-6. |
[4] |
C. Cinti and S. Polidoro, Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl., 338 (2008), 946-969.
doi: 10.1016/j.jmaa.2007.05.059. |
[5] |
E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43. |
[6] |
G. B. Folland, Subellitic estimates and function space on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.
doi: 10.1007/BF02386204. |
[7] |
M. Di Francesco and S. Polidoro, Harnack inequality for a class of degenerate parabolic equations of Kolmogorov type, Adv. Diff. Equ., 11 (2006), 1261-1320. |
[8] |
P. Hajlasz and P. Koskela, Sobolev met Poincar $é$, Mem. Amer. Math. Soc., 145 (2000), x+101. |
[9] |
A. E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., 1 (2004), 51-80.
doi: 10.1007/s00009-004-0004-8. |
[10] |
S. N. Kruzhkov, A priori bounds and some properties of solutions of elliptic and parabolic equations, Math. Sb. (N.S.), 65 (1964), 522-570. |
[11] |
S. N. Kruzhkov, A priori bounds for generalized solutions of second-order elliptic and parabolic equations, (Russian) Dokl. Akad. Nauk SSSR, 150 (1963), 748-751. |
[12] |
E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operaters, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. |
[13] |
A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $R^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 133-164. |
[14] |
M. Manfredini and S. Polidoro, Interior regularity for weak solutions of ultraparabolic equations in the divergence form with discontinuous coefficients, Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1 (1998), 651-675. |
[15] |
M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Diff. Equ., 2 (1997), 831-866. |
[16] |
J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591.
doi: 10.1002/cpa.3160140329. |
[17] |
J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101-134. |
[18] |
J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954.
doi: 10.2307/2372841. |
[19] |
A. Pascucci and S. Polidoro, The Moser's iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6 (2004), 395-417.
doi: 10.1142/S0219199704001355. |
[20] |
S. Polidoro and M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341-350.
doi: 10.1023/A:1011261019736. |
[21] |
W. Wang and L. Zhang, The $C^{\alpha}$ regularity of a class of non-homogeneous ultraparabolic equations, Science in China Series A: Math., 52 (2009), 1589-1605.
doi: 10.1007/s11425-009-0158-8. |
[22] |
Z. P. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. in Math., 181 (2004), 88-133.
doi: 10.1016/S0001-8708(03)00046-X. |
[23] |
Z. P. Xin, L. Zhang and J. N. Zhao, Global well-posedness for the two dimensional Prandtl's boundary layer equations, to appear. |
[24] |
L. Zhang, The $C^\alpha$ reglarity of a class of ultraparabolic equations, preprint, arXiv:0510405. |
show all references
References:
[1] |
A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory for Their Sub-Laplacians," Springer-Verlag, Berlin, Heidelberg, 2007. |
[2] |
M. Bramanti, M. C. Cerutti and M. Manfredini, $L^p$ estimates for some ultraparabolic equations, J. Math. Anal. Appl., 200 (1996), 332-354.
doi: 10.1006/jmaa.1996.0209. |
[3] |
C. Cinti, A. Pascucci and S. Polidoro, Pointwise estimates for solutions to a class of non-homogenous Kolmogorov equations, Math. Annal., 340 (2008), 237-264.
doi: 10.1007/s00208-007-0147-6. |
[4] |
C. Cinti and S. Polidoro, Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl., 338 (2008), 946-969.
doi: 10.1016/j.jmaa.2007.05.059. |
[5] |
E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43. |
[6] |
G. B. Folland, Subellitic estimates and function space on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.
doi: 10.1007/BF02386204. |
[7] |
M. Di Francesco and S. Polidoro, Harnack inequality for a class of degenerate parabolic equations of Kolmogorov type, Adv. Diff. Equ., 11 (2006), 1261-1320. |
[8] |
P. Hajlasz and P. Koskela, Sobolev met Poincar $é$, Mem. Amer. Math. Soc., 145 (2000), x+101. |
[9] |
A. E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., 1 (2004), 51-80.
doi: 10.1007/s00009-004-0004-8. |
[10] |
S. N. Kruzhkov, A priori bounds and some properties of solutions of elliptic and parabolic equations, Math. Sb. (N.S.), 65 (1964), 522-570. |
[11] |
S. N. Kruzhkov, A priori bounds for generalized solutions of second-order elliptic and parabolic equations, (Russian) Dokl. Akad. Nauk SSSR, 150 (1963), 748-751. |
[12] |
E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operaters, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. |
[13] |
A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $R^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 133-164. |
[14] |
M. Manfredini and S. Polidoro, Interior regularity for weak solutions of ultraparabolic equations in the divergence form with discontinuous coefficients, Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1 (1998), 651-675. |
[15] |
M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Diff. Equ., 2 (1997), 831-866. |
[16] |
J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591.
doi: 10.1002/cpa.3160140329. |
[17] |
J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101-134. |
[18] |
J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954.
doi: 10.2307/2372841. |
[19] |
A. Pascucci and S. Polidoro, The Moser's iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6 (2004), 395-417.
doi: 10.1142/S0219199704001355. |
[20] |
S. Polidoro and M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341-350.
doi: 10.1023/A:1011261019736. |
[21] |
W. Wang and L. Zhang, The $C^{\alpha}$ regularity of a class of non-homogeneous ultraparabolic equations, Science in China Series A: Math., 52 (2009), 1589-1605.
doi: 10.1007/s11425-009-0158-8. |
[22] |
Z. P. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. in Math., 181 (2004), 88-133.
doi: 10.1016/S0001-8708(03)00046-X. |
[23] |
Z. P. Xin, L. Zhang and J. N. Zhao, Global well-posedness for the two dimensional Prandtl's boundary layer equations, to appear. |
[24] |
L. Zhang, The $C^\alpha$ reglarity of a class of ultraparabolic equations, preprint, arXiv:0510405. |
[1] |
Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015 |
[2] |
Yong Zhou, Jishan Fan. Regularity criteria for a magnetohydrodynamic-$\alpha$ model. Communications on Pure and Applied Analysis, 2011, 10 (1) : 309-326. doi: 10.3934/cpaa.2011.10.309 |
[3] |
Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133 |
[4] |
Christian Bonatti, Sylvain Crovisier, Katsutoshi Shinohara. The $C^{1+\alpha }$ hypothesis in Pesin Theory revisited. Journal of Modern Dynamics, 2013, 7 (4) : 605-618. doi: 10.3934/jmd.2013.7.605 |
[5] |
Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769 |
[6] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1363-1383. doi: 10.3934/cpaa.2021024 |
[7] |
V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413 |
[8] |
Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241 |
[9] |
Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure and Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585 |
[10] |
Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic and Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293 |
[11] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[12] |
Gabriella Di Blasio. Ultraparabolic equations with nonlocal delayed boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4945-4965. doi: 10.3934/dcds.2013.33.4945 |
[13] |
Danijela Damjanovic, James Tanis, Zhenqi Jenny Wang. On globally hypoelliptic abelian actions and their existence on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6747-6766. doi: 10.3934/dcds.2020164 |
[14] |
Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159 |
[15] |
Kazuaki Taira. The hypoelliptic Robin problem for quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1601-1618. doi: 10.3934/dcdss.2020091 |
[16] |
Gabriella Di Blasio. An ultraparabolic problem arising from age-dependent population diffusion. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 843-858. doi: 10.3934/dcds.2009.25.843 |
[17] |
Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3491-3494. doi: 10.3934/dcdss.2020112 |
[18] |
Paolo Secchi. An alpha model for compressible fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351 |
[19] |
Cai-Ping Liu. Some characterizations and applications on strongly $\alpha$-preinvex and strongly $\alpha$-invex functions. Journal of Industrial and Management Optimization, 2008, 4 (4) : 727-738. doi: 10.3934/jimo.2008.4.727 |
[20] |
Pierre Patie, Aditya Vaidyanathan. A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators. Kinetic and Related Models, 2020, 13 (3) : 479-506. doi: 10.3934/krm.2020016 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]