Citation: |
[1] |
T. Aiki, Weak solutions for Falk's model of shape memory alloys, Math. Methods Appl. Sci., 23 (2000), 299-319.doi: 10.1002/(SICI)1099-1476(20000310)23:4<299::AID-MMA115>3.0.CO;2-D. |
[2] |
T. Aiki, Uniqueness for multi-dimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators, Differential Integral Equations, 15 (2002), 973-1008. |
[3] |
T. Aiki and A. Muntean, Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109-129. |
[4] |
T. Aiki and A. Muntean, Large time behavior of solutions to a concrete carbonation problem, Commun. Pure Appl. Anal., 9 (2010), 1117-1129.doi: 10.3934/cpaa.2010.9.1117. |
[5] |
T. Aiki and A. Muntean, Mathematical treatment of concrete carbonation process, in "Current Advances in Nonlinear Analysis and Related Topics," GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkotosho, Tokyo, (2010), 231-238. |
[6] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type," Transl. Math. Monograph, 23, Amer. Math. Soc., Providence, R. I., 1968. |
[7] |
J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Paris, 1969. |
[8] |
A. Muntean, "A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation," Ph.D. Thesis, Faculty of Mathematics, University of Bremen, Germany, Cuvillier Verlag, Göttingen, 2006. |
[9] |
A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: global existence and uniqueness of solutions, Journal of Mathematical Analysis and Applications, 350 (2009), 234-251.doi: 10.1016/j.jmaa.2008.09.044. |
[10] |
M. Niezgódka and I. Pawlow, A generalized Stefan problem in several space variables, Applied Math. Opt., 9 (1983), 193-224.doi: 10.1007/BF01460125. |