October  2011, 29(4): 1393-1404. doi: 10.3934/dcds.2011.29.1393

Asymptotic behaviour of a porous medium equation with fractional diffusion

1. 

Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712-1082

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

Received  March 2010 Revised  August 2010 Published  December 2010

We consider a porous medium equation with a nonlocal diffusion effect given by an inverse fractional Laplacian operator. The equation is posed in the whole space $\mathbb{R}^n$. In a previous paper we have found mass-preserving, nonnegative weak solutions of the equation satisfying energy estimates. Here we establish the large-time behaviour. We first find selfsimilar nonnegative solutions by solving an elliptic obstacle problem for the pair pressure-density involving the Laplacian, obtaining what we call obstacle Barenblatt solutions. The theory for elliptic fractional problems with obstacles has been recently established. We then use entropy methods to show that the asymptotic behavior of general finite-mass solutions is described after renormalization by these special solutions, which represent a surprising variation of the Barenblatt profiles of the standard porous medium model.
Citation: Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393
References:
[1]

I. Athanasopoulos, L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems,, Amer. J. Math., 130 (2008), 485.  doi: 10.1353/ajm.2008.0016.  Google Scholar

[2]

G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 16 (1952), 679.   Google Scholar

[3]

P. Biler, C. Imbert and G. Karch, Fractal porous medium equation,, preprint., ().   Google Scholar

[4]

P. Biler, G. Karch and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions,, Comm. Math. Phys., 294 (2010), 145.  doi: 10.1007/s00220-009-0855-8.  Google Scholar

[5]

L. A. Caffarelli, The obstacle problem revisited,, The Journal of Fourier Analysis and Applications, 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[6]

L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067.  doi: 10.1080/03605307908820119.  Google Scholar

[7]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[8]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Eqns., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow,, in preparation., ().   Google Scholar

[10]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[11]

L. A. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure,, \arXiv{1001.0410}., ().   Google Scholar

[12]

J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity,, Indiana Univ. Math. J., 49 (2000), 113.  doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[13]

J. A. Carrillo, A. Jngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[14]

M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions,, J. Math. Pures Appl., 81 (2002), 847.  doi: 10.1016/S0021-7824(02)01266-7.  Google Scholar

[15]

A. Friedman, "Variational Principles and Free Boundary Problems,", Wiley, (1982).   Google Scholar

[16]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $N$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Classics in Mathematics, (2001).   Google Scholar

[18]

A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation,, Phil. Mag., 26 (1972), 65.  doi: 10.1080/14786437208221020.  Google Scholar

[19]

N. S. Landkof, "Foundations Of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[20]

L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[21]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[22]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).   Google Scholar

[23]

J. L. Vázquez, "Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type,", Oxford Lecture Series in Mathematics and its Applications, 33 (2006).   Google Scholar

show all references

References:
[1]

I. Athanasopoulos, L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems,, Amer. J. Math., 130 (2008), 485.  doi: 10.1353/ajm.2008.0016.  Google Scholar

[2]

G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 16 (1952), 679.   Google Scholar

[3]

P. Biler, C. Imbert and G. Karch, Fractal porous medium equation,, preprint., ().   Google Scholar

[4]

P. Biler, G. Karch and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions,, Comm. Math. Phys., 294 (2010), 145.  doi: 10.1007/s00220-009-0855-8.  Google Scholar

[5]

L. A. Caffarelli, The obstacle problem revisited,, The Journal of Fourier Analysis and Applications, 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[6]

L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067.  doi: 10.1080/03605307908820119.  Google Scholar

[7]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[8]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Eqns., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow,, in preparation., ().   Google Scholar

[10]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[11]

L. A. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure,, \arXiv{1001.0410}., ().   Google Scholar

[12]

J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity,, Indiana Univ. Math. J., 49 (2000), 113.  doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[13]

J. A. Carrillo, A. Jngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1.  doi: 10.1007/s006050170032.  Google Scholar

[14]

M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions,, J. Math. Pures Appl., 81 (2002), 847.  doi: 10.1016/S0021-7824(02)01266-7.  Google Scholar

[15]

A. Friedman, "Variational Principles and Free Boundary Problems,", Wiley, (1982).   Google Scholar

[16]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $N$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Classics in Mathematics, (2001).   Google Scholar

[18]

A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation,, Phil. Mag., 26 (1972), 65.  doi: 10.1080/14786437208221020.  Google Scholar

[19]

N. S. Landkof, "Foundations Of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[20]

L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[21]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[22]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007).   Google Scholar

[23]

J. L. Vázquez, "Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type,", Oxford Lecture Series in Mathematics and its Applications, 33 (2006).   Google Scholar

[1]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[4]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[5]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[9]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[14]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[15]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[18]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[19]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (151)
  • HTML views (0)
  • Cited by (41)

Other articles
by authors

[Back to Top]