October  2011, 29(4): 1405-1417. doi: 10.3934/dcds.2011.29.1405

Hausdorffization and polynomial twists

1. 

Department of Mathematics, Computer Science, and Statistics, University of Illinois at Chicago, Chicago, IL, United States

2. 

Department of Mathematics, Indiana University, Bloomington, IN, United States

Received  December 2009 Revised  October 2010 Published  December 2010

We study dynamical equivalence relations on the moduli space $\MP_d$ of complex polynomial dynamical systems. Our main result is that the critical-heights quotient $\MP_d \to \cT_d$* of [4] is the Hausdorffization of a relation based on the twisting deformation of the basin of infinity. We also study relations of topological conjugacy and the Branner-Hubbard wringing deformation.
Citation: Laura DeMarco, Kevin Pilgrim. Hausdorffization and polynomial twists. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1405-1417. doi: 10.3934/dcds.2011.29.1405
References:
[1]

N. Bourbaki, General topology. Chapters 1-4,, in, (1998).   Google Scholar

[2]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space,, Acta Math., 160 (1988), 143.  doi: 10.1007/BF02392275.  Google Scholar

[3]

R. J. Daverman, "Decompositions of Manifolds,", AMS Chelsea Publishing, (2007).   Google Scholar

[4]

L. DeMarco and K. Pilgrim, Critical heights on the moduli space of polynomials,, Advances in Math., 226 (2011), 350.  doi: 10.1016/j.aim.2010.06.020.  Google Scholar

[5]

L. DeMarco and K. Pilgrim, Polynomial basins of infinity,, preprint, (2009).   Google Scholar

[6]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes,", volume \textbf{84} of Publications Mathématiques d'Orsay, 84 (1984).   Google Scholar

[7]

Peter Haïssinsky and Tan Lei, Convergence of pinching deformations and matings of geometrically finite polynomials,, Fund. Math., 181 (2004), 143.  doi: 10.4064/fm181-2-4.  Google Scholar

[8]

R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Sci. Ec. Norm. Sup., 16 (1983), 193.   Google Scholar

[9]

C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system,, Adv. Math., 135 (1998), 351.  doi: 10.1006/aima.1998.1726.  Google Scholar

show all references

References:
[1]

N. Bourbaki, General topology. Chapters 1-4,, in, (1998).   Google Scholar

[2]

B. Branner and J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space,, Acta Math., 160 (1988), 143.  doi: 10.1007/BF02392275.  Google Scholar

[3]

R. J. Daverman, "Decompositions of Manifolds,", AMS Chelsea Publishing, (2007).   Google Scholar

[4]

L. DeMarco and K. Pilgrim, Critical heights on the moduli space of polynomials,, Advances in Math., 226 (2011), 350.  doi: 10.1016/j.aim.2010.06.020.  Google Scholar

[5]

L. DeMarco and K. Pilgrim, Polynomial basins of infinity,, preprint, (2009).   Google Scholar

[6]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes,", volume \textbf{84} of Publications Mathématiques d'Orsay, 84 (1984).   Google Scholar

[7]

Peter Haïssinsky and Tan Lei, Convergence of pinching deformations and matings of geometrically finite polynomials,, Fund. Math., 181 (2004), 143.  doi: 10.4064/fm181-2-4.  Google Scholar

[8]

R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Sci. Ec. Norm. Sup., 16 (1983), 193.   Google Scholar

[9]

C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system,, Adv. Math., 135 (1998), 351.  doi: 10.1006/aima.1998.1726.  Google Scholar

[1]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[2]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[3]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[4]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[5]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[6]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[7]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[10]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[11]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[12]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]