\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hausdorffization and polynomial twists

Abstract Related Papers Cited by
  • We study dynamical equivalence relations on the moduli space $\MP_d$ of complex polynomial dynamical systems. Our main result is that the critical-heights quotient $\MP_d \to \cT_d$* of [4] is the Hausdorffization of a relation based on the twisting deformation of the basin of infinity. We also study relations of topological conjugacy and the Branner-Hubbard wringing deformation.
    Mathematics Subject Classification: Primary: 37F45; Secondary: 54B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Bourbaki, General topology. Chapters 1-4, in "Elements of Mathematics" (Berlin), Springer-Verlag, 1998. (translated from the French, reprint of the 1989 English translation)

    [2]

    B. Branner and J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., 160 (1988), 143-206.doi: 10.1007/BF02392275.

    [3]

    R. J. Daverman, "Decompositions of Manifolds," AMS Chelsea Publishing, Providence, RI, 2007. (reprint of the 1986 original)

    [4]

    L. DeMarco and K. Pilgrim, Critical heights on the moduli space of polynomials, Advances in Math., 226 (2011), 350-372.doi: 10.1016/j.aim.2010.06.020.

    [5]

    L. DeMarco and K. Pilgrim, Polynomial basins of infinity, preprint, 2009.

    [6]

    A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," volume 84 of Publications Mathématiques d'Orsay, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.

    [7]

    Peter Haïssinsky and Tan Lei, Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math., 181 (2004), 143-188.doi: 10.4064/fm181-2-4.

    [8]

    R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ec. Norm. Sup., 16 (1983), 193-217.

    [9]

    C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., 135 (1998), 351-395.doi: 10.1006/aima.1998.1726.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return