\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symbolic extensions and partially hyperbolic diffeomorphisms

Abstract Related Papers Cited by
  • We show there are no symbolic extensions $C^1$-generically among diffeomorphisms containing nonhyperbolic robustly transitive sets with a center indecomposable bundle of dimension at least 2. Similarly, $C^1$-generically homoclinic classes with a center indecomposable bundle of dimension at least 2 that satisfy a technical assumption called index adaptation have no symbolic extensions.
    Mathematics Subject Classification: Primary: 37D30, 37C05, 37C20, 37B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur, C. Bonatti, S. Crovisier, L. J. Díaz and G. Wen, Periodic points and homoclinic classes, Ergod. Th. Dynamic. Systems, 27 (2007), 1-22.

    [2]

    M. Asaoka, Hyperbolic sets exhibiting $C^1$-persistent homoclinic tangency for higher dimensions, Proc. Amer. Math. Soc., 136 (2008), 677-686.doi: 10.1090/S0002-9939-07-09115-0.

    [3]

    C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math., 143 (1996), 357-396.doi: 10.2307/2118647.

    [4]

    C. Bonatti and L. J. Díaz, Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup., 32 (1999), 135-150.

    [5]

    C. Bonatti and S. Crovisier, Recurrence et généricité, Invent. Math., 158 (2004), 33-104.

    [6]

    C. Bonatti and L. J. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 171-197.

    [7]

    C. Bonatti, L. J. Díaz and T. Fisher, Supergrowth of the number of periodic orbits for non-hyperbolic homoclinic classes, Discrete and Cont. Dynamic. Systems, 20 (2008), 589-604.

    [8]

    C. Bonatti, L. J. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms; weak forms of hyperbolicity or infinitely many sinks or sources, Annals of Math., 158 (2003), 355-418.doi: 10.4007/annals.2003.158.355.

    [9]

    C. Bonatti, L. J. Díaz, and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," volume 102 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2005.

    [10]

    C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.doi: 10.1007/BF02810585.

    [11]

    Ch. Bonatti, L. J. Díaz, E.R. Pujals and J. Rocha, Robustly transitive sets and heterodimensional cycles, Astérisque, 286 (2003), 187-222.

    [12]

    M. Boyle and T. Downarowicz, Symbolic extension entropy: $C^r$ examples, products and flows, Discrete Contin. Dyn. Syst., 16 (2006), 329-341.doi: 10.3934/dcds.2006.16.329.

    [13]

    M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy, and subshift covers, Forum Math., 14 (2002), 713-757.doi: 10.1515/form.2002.031.

    [14]

    M. Brin and Stuck G, "Introduction to Dynamical Systems," Cambridge University Press, 2002.doi: 10.1017/CBO9780511755316.

    [15]

    D. Burguet$C^2$ surface diffeomorphisms have symbolic extensions, preprint, arXiv:0912.2018.

    [16]

    K. Burns, personal communication.

    [17]

    J. Buzzi, Intrinsic ergodicity for smooth interval maps, Isreal J. Math., 100 (1997), 125-161.doi: 10.1007/BF02773637.

    [18]

    J. Buzzi, T. Fisher, M. Sambarino and C. VásquezIntrinsic ergodicity for certain partially hyperbolic derived from Anosov systems, preprint.

    [19]

    A. Candel and L. Conlon, "Foliations I," volume 23 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2000.

    [20]

    C. Carbalo, C. Morales and M. J. Pacifico, Homoclinic classes for generic $C^1$ vector fields, Ergod. Th. Dynamic. Systems, 23 (2003), 403-415.

    [21]

    W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, Ergod. Th. Dynamic. Systems, 25 (2005), 1115-1138.

    [22]

    L. J. Díaz, E. Pujals and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math., 183 (1999), 1-43.doi: 10.1007/BF02392945.

    [23]

    T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions, Inventiones Math., 176 (2009), 617-636.doi: 10.1007/s00222-008-0172-4.

    [24]

    T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems, Inventiones Math., 160 (2005), 453-499.doi: 10.1007/s00222-004-0413-0.

    [25]

    N. Gourmelon, Generation of homoclinic tangencies by $C^1$-perturbations, Discrete Contin. Dyn. Syst., 26 (2010), 1-42.doi: 10.3934/dcds.2010.26.1.

    [26]

    S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and $\omega$-stability conjectures for flows, Annals of Math., 145 (1997), 81-137.doi: 10.2307/2951824.

    [27]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, 1995.

    [28]

    G. Keller, "Equilibrium States in Ergodic Theory," London Mathematical Society Student Texts, Cambridge University Press, 1998.

    [29]

    R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396.doi: 10.1016/0040-9383(78)90005-8.

    [30]

    M. Misiurewicz, Diffeomorphim without any measure of maximal entropy, Bull. Acad. Pol. Sci., Ser Sci. Math, Astr. et Phys, 21 (1973), 903-910.

    [31]

    S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150.doi: 10.1090/S0002-9947-1972-0295388-6.

    [32]

    S. Newhouse, Continuity properties of entropy, Annals of Math., 129 (1989), 215-235.doi: 10.2307/1971492.

    [33]

    M. J. Pacifico and J. VieitezRobust entropy-expansiveness implies generic domination, preprint, arXiv:0903.2948.

    [34]

    M. J. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms, Rev. Mat. Complut., 21 (2008), 293-317.

    [35]

    E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Annals of Math., 151 (2000), 961-1023.doi: 10.2307/121127.

    [36]

    R. Saghin and Z. Xia, The entropy conjecture for partially hyperbolic diffeomorphisms with 1-D center, Topology Appl., 157 (2010), 29-34.doi: 10.1016/j.topol.2009.04.053.

    [37]

    M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc., 80 (1974), 27-41.doi: 10.1090/S0002-9904-1974-13344-6.

    [38]

    M. Shub, "Global Stability of Dynamical Systems," Springer-Verlag, New York, 1987.

    [39]

    K. Sigmund, Generic properties of invariant measures for Axiom-A-diffeomorphisms, Inventiones Math., 11 (1970), 99-109.doi: 10.1007/BF01404606.

    [40]

    C. P. Simon, Instability in Diff$(T^3)$ and the nongenericity of rational zeta function, Trans. Amer. Math. Soc., 174 (1972), 217-242.

    [41]

    P. Walters, "An Introduction to Ergodic Theory," volume 79 of Graduate Texts in Mathematics, Springer-Verlag, Berlin-New York, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return