-
Previous Article
On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow
- DCDS Home
- This Issue
-
Next Article
Symbolic extensions and partially hyperbolic diffeomorphisms
Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem
1. | Department of Mathematics, Pennsylvania State University, University Park, PA 16802 |
2. | Department of Mathematics, Pennsylvania Sate University, University Park, PA 16802, United States |
References:
[1] |
W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates,, SIAM Multiscale Model. Simulat., 2 (2004), 210.
doi: 10.1137/030600209. |
[2] |
W. Bao and Q. Du, Comuputing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.
doi: 10.1137/S1064827503422956. |
[3] |
H. Berestycki, T. C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint, (2010). Google Scholar |
[4] |
V. Bonnaillie-Noel, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM: COCV, 16 (2010), 221.
doi: 10.1051/cocv:2008074. |
[5] |
L. A. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, Journal of Scientific Computing, 31 (2007), 5.
doi: 10.1007/s10915-006-9114-8. |
[6] |
L. A. Cafferelli and F. H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, J. Amer. Math. Soc., 21 (2008), 847.
doi: 10.1090/S0894-0347-08-00593-6. |
[7] |
L. A. Cafferrelli and F. H. Lin, Nonlocal heat flows preserving the $L^2$ energy,, Discrete and Continuous Dynamical Systems A, 23 (2009), 49.
|
[8] |
S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.
doi: 10.1016/j.physd.2004.06.002. |
[9] |
S.-M. Chang, W.-W. Lin and S.-F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. of Computational Physics, 202 (2005), 367.
doi: 10.1016/j.jcp.2004.07.012. |
[10] |
M. Conti, S. Terracini and G. Verzini, Nehari's problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871.
doi: 10.1016/S0294-1449(02)00104-X. |
[11] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779.
doi: 10.1512/iumj.2005.54.2506. |
[12] |
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems,, Adv. Math., 195 (2005), 524.
doi: 10.1016/j.aim.2004.08.006. |
[13] |
Q. Du and F.-H. Lin, Numerical approximations of a norm preserving nonlinear gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.
doi: 10.1088/0951-7715/22/1/005. |
[14] |
T.-C. Lin and J. Wei, Ground state of n coupled nonlinear schrodinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.
doi: 10.1007/s00220-005-1313-x. |
[15] |
J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition,, Nonlinearity, 21 (2008), 305.
doi: 10.1088/0951-7715/21/2/006. |
show all references
References:
[1] |
W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates,, SIAM Multiscale Model. Simulat., 2 (2004), 210.
doi: 10.1137/030600209. |
[2] |
W. Bao and Q. Du, Comuputing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674.
doi: 10.1137/S1064827503422956. |
[3] |
H. Berestycki, T. C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties,, preprint, (2010). Google Scholar |
[4] |
V. Bonnaillie-Noel, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM: COCV, 16 (2010), 221.
doi: 10.1051/cocv:2008074. |
[5] |
L. A. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, Journal of Scientific Computing, 31 (2007), 5.
doi: 10.1007/s10915-006-9114-8. |
[6] |
L. A. Cafferelli and F. H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, J. Amer. Math. Soc., 21 (2008), 847.
doi: 10.1090/S0894-0347-08-00593-6. |
[7] |
L. A. Cafferrelli and F. H. Lin, Nonlocal heat flows preserving the $L^2$ energy,, Discrete and Continuous Dynamical Systems A, 23 (2009), 49.
|
[8] |
S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.
doi: 10.1016/j.physd.2004.06.002. |
[9] |
S.-M. Chang, W.-W. Lin and S.-F. Shieh, Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate,, J. of Computational Physics, 202 (2005), 367.
doi: 10.1016/j.jcp.2004.07.012. |
[10] |
M. Conti, S. Terracini and G. Verzini, Nehari's problem and competing species systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871.
doi: 10.1016/S0294-1449(02)00104-X. |
[11] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems,, Indiana Univ. Math. J., 54 (2005), 779.
doi: 10.1512/iumj.2005.54.2506. |
[12] |
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems,, Adv. Math., 195 (2005), 524.
doi: 10.1016/j.aim.2004.08.006. |
[13] |
Q. Du and F.-H. Lin, Numerical approximations of a norm preserving nonlinear gradient flow and applications to an optimal partition problem,, Nonlinearity, 22 (2009), 67.
doi: 10.1088/0951-7715/22/1/005. |
[14] |
T.-C. Lin and J. Wei, Ground state of n coupled nonlinear schrodinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.
doi: 10.1007/s00220-005-1313-x. |
[15] |
J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition,, Nonlinearity, 21 (2008), 305.
doi: 10.1088/0951-7715/21/2/006. |
[1] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[2] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[3] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[6] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[7] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[8] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[9] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[10] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[11] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[12] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[15] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[16] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[17] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[18] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]