October  2011, 29(4): 1463-1470. doi: 10.3934/dcds.2011.29.1463

On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow

1. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914

2. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914

3. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Received  November 2009 Revised  October 2010 Published  December 2010

We study the motion of noncompact hypersurfaces moved by their mean curvature obtained by a rotation around $x$-axis of the graph a function $y=u(x,t)$ (defined for all $x\in \mathbb{R}$). We are interested to estimate its profile when the hypersurface closes open ends at the quenching (pinching) time $T$. We estimate its profile at the quenching time from above and below. We in particular prove that $u(x,T)$ ~ $|x|^{-a}$ as $|x|\to\infty$ if $u(x,0)$ tends to its infimum with algebraic rate $|x|^{-2a} $ (as $|x| \to \infty $ with $a>0$).
Citation: Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463
References:
[1]

M.-H. Giga, Y. Giga and J. Saal, "Nonliear Partial Differential Equations - Asymptotic Behaviour of Solutions and Self-Similar Solutions,", Progress in Nonlinear Differential Equations and Their Applications \textbf{79}, 79 (1999).   Google Scholar

[2]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Birkhäuser, (2006).   Google Scholar

[3]

Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat equations,, in, (2007), 77.   Google Scholar

[4]

Y. Giga, Y. Seki and N. Umeda, Mean curvature flow closes open sets of noncompact surface of rotation,, Comm. Partial Differential Equations, 34 (2009), 1508.  doi: doi:10.1080/03605300903296926.  Google Scholar

[5]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538.  doi: doi:10.1016/j.jmaa.2005.05.007.  Google Scholar

[6]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat. (3), 23 (2005), 9.   Google Scholar

[7]

A. L. Gladkov, The behavior as $x\to \infty $ of solutions of semilinear parabolic equations (Russian),, Mat. Zametki, 51 (1992), 29.  doi: doi:10.1007/BF02102115.  Google Scholar

[8]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.   Google Scholar

[9]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572.  doi: doi:10.1016/j.jmaa.2007.05.033.  Google Scholar

[10]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect., 138 (2008), 379.   Google Scholar

[11]

M. Shimojo, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.   Google Scholar

[12]

M. Shimojo and N. Umeda, Blow-up at space infinity for solutions of cooperative reaction-diffusion systems,, preprint., ().   Google Scholar

show all references

References:
[1]

M.-H. Giga, Y. Giga and J. Saal, "Nonliear Partial Differential Equations - Asymptotic Behaviour of Solutions and Self-Similar Solutions,", Progress in Nonlinear Differential Equations and Their Applications \textbf{79}, 79 (1999).   Google Scholar

[2]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Birkhäuser, (2006).   Google Scholar

[3]

Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat equations,, in, (2007), 77.   Google Scholar

[4]

Y. Giga, Y. Seki and N. Umeda, Mean curvature flow closes open sets of noncompact surface of rotation,, Comm. Partial Differential Equations, 34 (2009), 1508.  doi: doi:10.1080/03605300903296926.  Google Scholar

[5]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538.  doi: doi:10.1016/j.jmaa.2005.05.007.  Google Scholar

[6]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat. (3), 23 (2005), 9.   Google Scholar

[7]

A. L. Gladkov, The behavior as $x\to \infty $ of solutions of semilinear parabolic equations (Russian),, Mat. Zametki, 51 (1992), 29.  doi: doi:10.1007/BF02102115.  Google Scholar

[8]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.   Google Scholar

[9]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572.  doi: doi:10.1016/j.jmaa.2007.05.033.  Google Scholar

[10]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect., 138 (2008), 379.   Google Scholar

[11]

M. Shimojo, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.   Google Scholar

[12]

M. Shimojo and N. Umeda, Blow-up at space infinity for solutions of cooperative reaction-diffusion systems,, preprint., ().   Google Scholar

[1]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[4]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[7]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[13]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[14]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]