October  2011, 29(4): 1471-1495. doi: 10.3934/dcds.2011.29.1471

Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms

1. 

Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland, Switzerland

Received  January 2010 Revised  September 2010 Published  December 2010

We consider generalized linear transient convection-diffusion problems for differential forms on bounded domains in $\mathbb{R}^{n}$. These involve Lie derivatives with respect to a prescribed smooth vector field. We construct both new Eulerian and semi-Lagrangian approaches to the discretization of the Lie derivatives in the context of a Galerkin approximation based on discrete differential forms. Our focus is on derivations of the schemes, details of implementation, as well as on application to the discretization of eddy current equations in moving media.
Citation: Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471
References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," Addison-Wesley, London, 1983.

[2]

D. A. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), 281-354. doi: 10.1090/S0273-0979-10-01278-4.

[3]

D. N. Arnold, R. S. Falk and R. Winther, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000), 197-217. doi: 10.1007/PL00005386.

[4]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, 15 (2006), 1-155. doi: 10.1017/S0962492906210018.

[5]

A. Bossavit, Extrusion, contraction: Their discretization via Whitney forms, COMPEL, 22 (2004), 470-480.

[6]

A. Bossavit, Discretization of electromagnetic problems: The "generalized finite differences," in "Numerical Methods in Electromagnetics," volume XIII of Handbook of Numerical Analysis (eds. W. H. A. Schilders and W. J. W. ter Maten), Elsevier, Amsterdam, (2005), 443-522.

[7]

A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches, contribution to COMPUMAG '99., 1999.

[8]

F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems, Math. Model. Numer. Anal., 43 (2009), 277-295. doi: 10.1051/m2an:2008046.

[9]

F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), 1893-1903. doi: 10.1142/S0218202504003866.

[10]

M. A. Celia, T. F. Russell, I. Herrera and R. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Wat. Resour., 13 (1990), 187-206. doi: 10.1016/0309-1708(90)90041-2.

[11]

H. De Sterk, Multi-dimensional upwind constrained transport on unstructured grids for "shallow water" magnetohydrodynamics, in "Proceedings of the 15th AIAA CFD Conference, Jun 11-14, Anaheim, CA," AIAA, (2001).

[12]

M. Desbrun, A. N. Hirani, J. E. Marsden and M. Leok, Discrete exterior calculus,, preprint, (). 

[13]

V. Dolejsi, M. Feistauer and J. Hozman, Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2813-2827. doi: 10.1016/j.cma.2006.09.025.

[14]

M. E. Gurtin, "An Introduction to Continuum Mechanics," volume 158 of Mathematics in Science and Engineering, Academic Press, New York, 1981.

[15]

J. Harrison, Ravello lecture notes on geometric calculus - Part I,, preprint, (). 

[16]

H. Heumann and R. Hiptmair, "Extrusion Contraction Upwind Schemes for Convection-Diffusion Problems," Report 2008-30, SAM, ETH Zürich, Zürich, Switzerland, 2008. http://www.sam.math.ethz.ch/reports/2008/30

[17]

H. Heumann, R. Hiptmair and J. Xu, "A Semi-Lagrangian Method for Convection of Differential Forms," Report 2009-09, SAM, ETH Zürich, Zürich, Switzerland, 2009. http://www.sam.math.ethz.ch/reports/2009/09

[18]

R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36(1) (1999), 204-225. doi: 10.1137/S0036142997326203.

[19]

R. Hiptmair, Discrete Hodge operators, Numer. Math., 90 (2001), 265-289. doi: 10.1007/s002110100295.

[20]

R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), 237-339. doi: 10.1017/CBO9780511550140.004.

[21]

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), 2483-2509. doi: 10.1137/060660588.

[22]

A. N. Hirani, "Discrete Exterior Calculus," Ph.D. Thesis, California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05202003-095403.

[23]

J. M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, International Journal of Computers & Mathematics with Applications, 33 (1997), 81-104. doi: 10.1016/S0898-1221(97)00009-6.

[24]

J. M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations, J. Comp. Phys., 151 (1999), 881-909. doi: 10.1006/jcph.1999.6225.

[25]

J. M. Hyman and M. Shashkov, Mimetic finite difference methods for Maxwell's equations and the equations of magnetic diffusion, in "Geometric Methods for Computational Electromagnetics," volume 32 of PIER (ed. F. L. Teixeira), EMW Publishing, Cambridge, MA, (2001), 89-121.

[26]

S. Lang, "Differential and Riemannian Manifolds in Mathematics," Springer, New York, 1995.

[27]

S. Lang, "Fundamentals of Differential Geometry," Springer, 1999.

[28]

K. W. Morton, A. Priestley and E. Süli, Convergence of the Lagrange-Galerkin method with non-exact integration, Mathematical Modelling and Numerical Analysis, 22 (1988), 625-653.

[29]

P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Discrete Lie advection and differential forms,, preprint, (). 

[30]

R. N. Rieben, D. A. White, B. K. Wallin and J. M. Solberg, An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids, J. Comp. Phys., 226 (2007), 534-570. doi: 10.1016/j.jcp.2007.04.031.

[31]

G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, J. Elasticity, 71 (2003), 183-203. doi: 10.1023/B:ELAS.0000005545.46932.08.

[32]

H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems," volume 24 of Springer Series in Computational Mathematics, Springer, Berlin, 1996.

[33]

J.-C. Xu, Optimal algorithms for discretized partial differential equations, in "Proceedings of the ICIAM'07 conference, Zürich, Switzerland, July 2007," EMS Publishing House, 2008.

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," Addison-Wesley, London, 1983.

[2]

D. A. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), 281-354. doi: 10.1090/S0273-0979-10-01278-4.

[3]

D. N. Arnold, R. S. Falk and R. Winther, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000), 197-217. doi: 10.1007/PL00005386.

[4]

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, 15 (2006), 1-155. doi: 10.1017/S0962492906210018.

[5]

A. Bossavit, Extrusion, contraction: Their discretization via Whitney forms, COMPEL, 22 (2004), 470-480.

[6]

A. Bossavit, Discretization of electromagnetic problems: The "generalized finite differences," in "Numerical Methods in Electromagnetics," volume XIII of Handbook of Numerical Analysis (eds. W. H. A. Schilders and W. J. W. ter Maten), Elsevier, Amsterdam, (2005), 443-522.

[7]

A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches, contribution to COMPUMAG '99., 1999.

[8]

F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems, Math. Model. Numer. Anal., 43 (2009), 277-295. doi: 10.1051/m2an:2008046.

[9]

F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), 1893-1903. doi: 10.1142/S0218202504003866.

[10]

M. A. Celia, T. F. Russell, I. Herrera and R. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Wat. Resour., 13 (1990), 187-206. doi: 10.1016/0309-1708(90)90041-2.

[11]

H. De Sterk, Multi-dimensional upwind constrained transport on unstructured grids for "shallow water" magnetohydrodynamics, in "Proceedings of the 15th AIAA CFD Conference, Jun 11-14, Anaheim, CA," AIAA, (2001).

[12]

M. Desbrun, A. N. Hirani, J. E. Marsden and M. Leok, Discrete exterior calculus,, preprint, (). 

[13]

V. Dolejsi, M. Feistauer and J. Hozman, Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2813-2827. doi: 10.1016/j.cma.2006.09.025.

[14]

M. E. Gurtin, "An Introduction to Continuum Mechanics," volume 158 of Mathematics in Science and Engineering, Academic Press, New York, 1981.

[15]

J. Harrison, Ravello lecture notes on geometric calculus - Part I,, preprint, (). 

[16]

H. Heumann and R. Hiptmair, "Extrusion Contraction Upwind Schemes for Convection-Diffusion Problems," Report 2008-30, SAM, ETH Zürich, Zürich, Switzerland, 2008. http://www.sam.math.ethz.ch/reports/2008/30

[17]

H. Heumann, R. Hiptmair and J. Xu, "A Semi-Lagrangian Method for Convection of Differential Forms," Report 2009-09, SAM, ETH Zürich, Zürich, Switzerland, 2009. http://www.sam.math.ethz.ch/reports/2009/09

[18]

R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36(1) (1999), 204-225. doi: 10.1137/S0036142997326203.

[19]

R. Hiptmair, Discrete Hodge operators, Numer. Math., 90 (2001), 265-289. doi: 10.1007/s002110100295.

[20]

R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), 237-339. doi: 10.1017/CBO9780511550140.004.

[21]

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), 2483-2509. doi: 10.1137/060660588.

[22]

A. N. Hirani, "Discrete Exterior Calculus," Ph.D. Thesis, California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05202003-095403.

[23]

J. M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, International Journal of Computers & Mathematics with Applications, 33 (1997), 81-104. doi: 10.1016/S0898-1221(97)00009-6.

[24]

J. M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations, J. Comp. Phys., 151 (1999), 881-909. doi: 10.1006/jcph.1999.6225.

[25]

J. M. Hyman and M. Shashkov, Mimetic finite difference methods for Maxwell's equations and the equations of magnetic diffusion, in "Geometric Methods for Computational Electromagnetics," volume 32 of PIER (ed. F. L. Teixeira), EMW Publishing, Cambridge, MA, (2001), 89-121.

[26]

S. Lang, "Differential and Riemannian Manifolds in Mathematics," Springer, New York, 1995.

[27]

S. Lang, "Fundamentals of Differential Geometry," Springer, 1999.

[28]

K. W. Morton, A. Priestley and E. Süli, Convergence of the Lagrange-Galerkin method with non-exact integration, Mathematical Modelling and Numerical Analysis, 22 (1988), 625-653.

[29]

P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Discrete Lie advection and differential forms,, preprint, (). 

[30]

R. N. Rieben, D. A. White, B. K. Wallin and J. M. Solberg, An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids, J. Comp. Phys., 226 (2007), 534-570. doi: 10.1016/j.jcp.2007.04.031.

[31]

G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, J. Elasticity, 71 (2003), 183-203. doi: 10.1023/B:ELAS.0000005545.46932.08.

[32]

H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems," volume 24 of Springer Series in Computational Mathematics, Springer, Berlin, 1996.

[33]

J.-C. Xu, Optimal algorithms for discretized partial differential equations, in "Proceedings of the ICIAM'07 conference, Zürich, Switzerland, July 2007," EMS Publishing House, 2008.

[1]

Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063

[2]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[3]

Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111

[4]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[5]

Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935

[6]

Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373

[7]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

[8]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

[9]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[10]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[11]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[12]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[13]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[14]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[15]

Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002

[16]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[17]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[18]

Antti Lipponen, Aku Seppänen, Jari Hämäläinen, Jari P. Kaipio. Nonstationary inversion of convection-diffusion problems - recovery from unknown nonstationary velocity fields. Inverse Problems and Imaging, 2010, 4 (3) : 463-483. doi: 10.3934/ipi.2010.4.463

[19]

Catherine Choquet, Marie-Christine Néel. From particles scale to anomalous or classical convection-diffusion models with path integrals. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 207-238. doi: 10.3934/dcdss.2014.7.207

[20]

Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]