October  2011, 29(4): 1497-1516. doi: 10.3934/dcds.2011.29.1497

Subshifts of finite type which have completely positive entropy

1. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States

Received  November 2009 Revised  July 2010 Published  December 2010

Domino tilings have been studied extensively for both their statistical properties [5], [12], [15] and their dynamical properties [3]. We construct a subshift of finite type using matching rules for several types of dominos. We combine the previous results about domino tilings to show that our subshift of finite type has a measure of maximal entropy with which the subshift has completely positive entropy but is not isomorphic to a Bernoulli shift.
Citation: Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497
References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

show all references

References:
[1]

R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).   Google Scholar

[2]

H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).  doi: 10.1088/0305-4470/15/11/011.  Google Scholar

[3]

R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.  doi: 10.1214/aop/1176989121.  Google Scholar

[4]

R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.  doi: 10.1017/S0143385700007859.  Google Scholar

[5]

H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.   Google Scholar

[6]

J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.   Google Scholar

[7]

J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.  doi: 10.1007/BF02761426.  Google Scholar

[8]

N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.  doi: 10.1016/0001-8708(70)90010-1.  Google Scholar

[9]

C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.  doi: 10.1007/BF02773484.  Google Scholar

[10]

F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[11]

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.  doi: 10.1007/s00222-002-0249-4.  Google Scholar

[12]

R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.  doi: 10.1214/aop/1019160260.  Google Scholar

[13]

R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.   Google Scholar

[14]

R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.  doi: 10.1214/aop/1015345599.  Google Scholar

[15]

R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[16]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[17]

D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).   Google Scholar

[18]

I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.  doi: 10.1007/BF02757724.  Google Scholar

[19]

S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.  doi: 10.1214/009117905000000765.  Google Scholar

[20]

W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.  doi: 10.2307/2324578.  Google Scholar

[1]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[2]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[5]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[8]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[9]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[10]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]