-
Previous Article
Repeated games for non-linear parabolic integro-differential equations and integral curvature flows
- DCDS Home
- This Issue
-
Next Article
Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms
Subshifts of finite type which have completely positive entropy
1. | Department of Mathematics, University of Washington, Seattle, WA 98195-4350, United States |
References:
[1] |
R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).
|
[2] |
H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).
doi: 10.1088/0305-4470/15/11/011. |
[3] |
R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.
doi: 10.1214/aop/1176989121. |
[4] |
R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.
doi: 10.1017/S0143385700007859. |
[5] |
H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.
|
[6] |
J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.
|
[7] |
J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.
doi: 10.1007/BF02761426. |
[8] |
N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.
doi: 10.1016/0001-8708(70)90010-1. |
[9] |
C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.
doi: 10.1007/BF02773484. |
[10] |
F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().
|
[11] |
R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.
doi: 10.1007/s00222-002-0249-4. |
[12] |
R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.
doi: 10.1214/aop/1019160260. |
[13] |
R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.
|
[14] |
R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.
doi: 10.1214/aop/1015345599. |
[15] |
R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.
doi: 10.4007/annals.2006.163.1019. |
[16] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[17] |
D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).
|
[18] |
I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.
doi: 10.1007/BF02757724. |
[19] |
S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.
doi: 10.1214/009117905000000765. |
[20] |
W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.
doi: 10.2307/2324578. |
show all references
References:
[1] |
R. Berger, The undecidability of the domino problem,, Memoirs Amer. Math. Soc., 66 (1966).
|
[2] |
H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zero-temperature triangular Ising antiferromagnet,, J. Phys. A, 15 (1982).
doi: 10.1088/0305-4470/15/11/011. |
[3] |
R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances,, Ann. Probab., 21 (1993), 1329.
doi: 10.1214/aop/1176989121. |
[4] |
R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type,, Ergodic Theory Dynam. Systems, 14 (1994), 213.
doi: 10.1017/S0143385700007859. |
[5] |
H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings,, Journal Of The AMS, 14 (2001), 297.
|
[6] |
J. P. Conze, Entropie d'un groupe abélian de transformations1., Z Wasrscheinlichkeitstheorie Verw. Geiete, 25 (1972), 11.
|
[7] |
J. Feldman, New $K$-automorphisms and a problem of Kakutani,, Israel J. Math., 24 (1976), 16.
doi: 10.1007/BF02761426. |
[8] |
N. A. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations,, Advances in Math., 5 (1970), 365.
doi: 10.1016/0001-8708(70)90010-1. |
[9] |
C. Hoffman, A Markov random field which is $K$ but not Bernoulli,, Israel J. Math., 112 (1999), 249.
doi: 10.1007/BF02773484. |
[10] |
F. den Hollander and J. Steif, On K-automorphisms, Bernoulli shifts and Markov random fields,, Ergodic Theory and Dynamical Systems, ().
|
[11] |
R. Kenyon, The Laplacian and Dirac operators on critical planar graphs,, Invent. Math., 150 (2002), 409.
doi: 10.1007/s00222-002-0249-4. |
[12] |
R. Kenyon, Conformal invariance of domino tiling,, Ann. Probab., 28 (2000), 759.
doi: 10.1214/aop/1019160260. |
[13] |
R. Kenyon, Local statistics of lattice dimers,, Ann. Inst. H. Poincaré, 33 (1997), 591.
|
[14] |
R. Kenyon, Dominos and the Gaussian free field,, Ann. Probab., 29 (2001), 1128.
doi: 10.1214/aop/1015345599. |
[15] |
R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae,, Ann. of Math. (2), 163 (2006), 1019.
doi: 10.4007/annals.2006.163.1019. |
[16] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[17] |
D. Lind, B. Marcus, "An Introduction to Symbolic Dynamics and Coding,", Cambridge University Press, (1995).
|
[18] |
I. Meilijson, Mixing properties of a class of skew-products,, Israel J. Math., 19 (1974), 266.
doi: 10.1007/BF02757724. |
[19] |
S. Sheffield, Uniqueness of maximal entropy measure on essential spanning forests,, Ann. Probab., 34 (2006), 857.
doi: 10.1214/009117905000000765. |
[20] |
W. P. Thurston, Conway's tiling groups,, Amer. Math. Monthly, 97 (1990), 757.
doi: 10.2307/2324578. |
[1] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[2] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[3] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[4] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[5] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[6] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[7] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[8] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[9] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[10] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[11] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[12] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]