• Previous Article
    Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals
  • DCDS Home
  • This Issue
  • Next Article
    Subshifts of finite type which have completely positive entropy
October  2011, 29(4): 1517-1552. doi: 10.3934/dcds.2011.29.1517

Repeated games for non-linear parabolic integro-differential equations and integral curvature flows

1. 

CEREMADE, UMR CNRS 7534, université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16

2. 

UPMC Univ Paris 06, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005, France

Received  January 2010 Revised  September 2010 Published  December 2010

The main purpose of this paper is to approximate several non-local evolution equations by zero-sum repeated games in the spirit of the previous works of Kohn and the second author (2006 and 2009): general fully non-linear parabolic integro-differential equations on the one hand, and the integral curvature flow of an on the other hand. In order to do so, we start by constructing such a game for eikonal equations whose speed has a non-constant sign. This provides a (discrete) deterministic control interpretation of these evolution equations.
   In all our games, two players choose positions successively, and their final payoff is determined by their positions and additional parameters of choice. Because of the non-locality of the problems approximated, by contrast with local problems, their choices have to "collect" information far from their current position. For parabolic integro-differential equations, players choose smooth functions on the whole space. For integral curvature flows, players choose hypersurfaces in the whole space and positions on these hypersurfaces.
Citation: Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517
References:
[1]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data,, Trans. Amer. Math. Soc., 361 (2009), 2527.  doi: 10.1090/S0002-9947-08-04758-2.  Google Scholar

[2]

O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution,, Arch. Ration. Mech. Anal., 181 (2006), 449.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited,, Annales de l'Institut Henri Poincaré, 25 (2008), 567.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[4]

G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439.  doi: 10.1137/0331021.  Google Scholar

[5]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.   Google Scholar

[6]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Non local minimal surfaces,, 2009, ().   Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[8]

L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Rational Mech. Anal., 180 (2010), 301.   Google Scholar

[9]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, J. Differential Geom., 33 (1991), 749.   Google Scholar

[10]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Financial Mathematics Series, (2004).   Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.   Google Scholar

[12]

M. G. Crandall and P.-L. Lions, Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre,, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 183.   Google Scholar

[13]

F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics,, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061.  doi: 10.4171/JEMS/140.  Google Scholar

[14]

L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations,, Indiana Univ. Math. J., 33 (1984), 773.  doi: 10.1512/iumj.1984.33.33040.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I,, J. Differential Geom., 33 (1991), 635.   Google Scholar

[16]

N. Forcadel, C. Imbert, and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics,, Discrete Contin. Dyn. Syst., 23 (2009), 785.  doi: 10.3934/dcds.2009.23.785.  Google Scholar

[17]

C. Imbert, Level set approach for fractional mean curvature flows,, Interfaces Free Bound., 11 (2009), 153.  doi: 10.4171/IFB/207.  Google Scholar

[18]

C. Imbert and P. E. Souganidis, Phasefield theory for fractional reaction-diffusion equations and applications,, preprint, (2009).   Google Scholar

[19]

E. R. Jakobsen and K. H. Karlsen, A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations,, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137.  doi: 10.1007/s00030-005-0031-6.  Google Scholar

[20]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[21]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully non-linear parabolic and elliptic equations,, Comm. Pure Appl. Math., 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[22]

P.-L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations,", vol. 69 of Research Notes in Mathematics, 69 (1982).   Google Scholar

[23]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[24]

A. Sayah, Équations de Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité,, Comm. Partial Differential Equations, 16 (1991), 1057.   Google Scholar

[25]

H. M. Soner, Optimal control of jump-Markov processes and viscosity solutions,, in, 10 (1988), 501.   Google Scholar

[26]

P. E. Souganidis, Front propagation: Theory and applications,, in, 1660 (1997), 186.   Google Scholar

[27]

J. Spencer, Balancing games,, J. Combinatorial Theory Ser. B, 23 (1977), 68.  doi: 10.1016/0095-8956(77)90057-0.  Google Scholar

show all references

References:
[1]

N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data,, Trans. Amer. Math. Soc., 361 (2009), 2527.  doi: 10.1090/S0002-9947-08-04758-2.  Google Scholar

[2]

O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution,, Arch. Ration. Mech. Anal., 181 (2006), 449.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited,, Annales de l'Institut Henri Poincaré, 25 (2008), 567.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[4]

G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory,, SIAM J. Control Optim., 31 (1993), 439.  doi: 10.1137/0331021.  Google Scholar

[5]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Anal., 4 (1991), 271.   Google Scholar

[6]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Non local minimal surfaces,, 2009, ().   Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[8]

L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Rational Mech. Anal., 180 (2010), 301.   Google Scholar

[9]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, J. Differential Geom., 33 (1991), 749.   Google Scholar

[10]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Financial Mathematics Series, (2004).   Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.   Google Scholar

[12]

M. G. Crandall and P.-L. Lions, Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre,, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 183.   Google Scholar

[13]

F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics,, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061.  doi: 10.4171/JEMS/140.  Google Scholar

[14]

L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations,, Indiana Univ. Math. J., 33 (1984), 773.  doi: 10.1512/iumj.1984.33.33040.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I,, J. Differential Geom., 33 (1991), 635.   Google Scholar

[16]

N. Forcadel, C. Imbert, and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics,, Discrete Contin. Dyn. Syst., 23 (2009), 785.  doi: 10.3934/dcds.2009.23.785.  Google Scholar

[17]

C. Imbert, Level set approach for fractional mean curvature flows,, Interfaces Free Bound., 11 (2009), 153.  doi: 10.4171/IFB/207.  Google Scholar

[18]

C. Imbert and P. E. Souganidis, Phasefield theory for fractional reaction-diffusion equations and applications,, preprint, (2009).   Google Scholar

[19]

E. R. Jakobsen and K. H. Karlsen, A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations,, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137.  doi: 10.1007/s00030-005-0031-6.  Google Scholar

[20]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[21]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully non-linear parabolic and elliptic equations,, Comm. Pure Appl. Math., 63 (2010), 1298.  doi: 10.1002/cpa.20336.  Google Scholar

[22]

P.-L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations,", vol. 69 of Research Notes in Mathematics, 69 (1982).   Google Scholar

[23]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[24]

A. Sayah, Équations de Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité,, Comm. Partial Differential Equations, 16 (1991), 1057.   Google Scholar

[25]

H. M. Soner, Optimal control of jump-Markov processes and viscosity solutions,, in, 10 (1988), 501.   Google Scholar

[26]

P. E. Souganidis, Front propagation: Theory and applications,, in, 1660 (1997), 186.   Google Scholar

[27]

J. Spencer, Balancing games,, J. Combinatorial Theory Ser. B, 23 (1977), 68.  doi: 10.1016/0095-8956(77)90057-0.  Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[6]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[12]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[15]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[16]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[19]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[20]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]