-
Previous Article
Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals
- DCDS Home
- This Issue
-
Next Article
Subshifts of finite type which have completely positive entropy
Repeated games for non-linear parabolic integro-differential equations and integral curvature flows
1. | CEREMADE, UMR CNRS 7534, université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16 |
2. | UPMC Univ Paris 06, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005, France |
  In all our games, two players choose positions successively, and their final payoff is determined by their positions and additional parameters of choice. Because of the non-locality of the problems approximated, by contrast with local problems, their choices have to "collect" information far from their current position. For parabolic integro-differential equations, players choose smooth functions on the whole space. For integral curvature flows, players choose hypersurfaces in the whole space and positions on these hypersurfaces.
References:
[1] |
N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Trans. Amer. Math. Soc., 361 (2009), 2527-2566.
doi: 10.1090/S0002-9947-08-04758-2. |
[2] |
O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.
doi: 10.1007/s00205-006-0418-5. |
[3] |
G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 25 (2008), 567-585.
doi: 10.1016/j.anihpc.2007.02.007. |
[4] |
G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469.
doi: 10.1137/0331021. |
[5] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283. |
[6] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Non local minimal surfaces,, 2009, ().
|
[7] |
L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Rational Mech. Anal., 180 (2010), 301-360. |
[9] |
Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. |
[10] |
R. Cont and P. Tankov, "Financial Modelling with Jump Processes," Financial Mathematics Series, Chapman & Hall/CRC, 2004. |
[11] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. |
[12] |
M. G. Crandall and P.-L. Lions, Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 183-186. |
[13] |
F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104.
doi: 10.4171/JEMS/140. |
[14] |
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[15] |
L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681. |
[16] |
N. Forcadel, C. Imbert, and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826.
doi: 10.3934/dcds.2009.23.785. |
[17] |
C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11 (2009), 153-176.
doi: 10.4171/IFB/207. |
[18] |
C. Imbert and P. E. Souganidis, Phasefield theory for fractional reaction-diffusion equations and applications, preprint, 2009, arXiv:0907.5524v1. |
[19] |
E. R. Jakobsen and K. H. Karlsen, A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137-165.
doi: 10.1007/s00030-005-0031-6. |
[20] |
R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407.
doi: 10.1002/cpa.20101. |
[21] |
R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully non-linear parabolic and elliptic equations, Comm. Pure Appl. Math., 63 (2010), 1298-1350.
doi: 10.1002/cpa.20336. |
[22] |
P.-L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," vol. 69 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, Mass., 1982. |
[23] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[24] |
A. Sayah, Équations de Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité, Comm. Partial Differential Equations, 16 (1991), 1057-1074. |
[25] |
H. M. Soner, Optimal control of jump-Markov processes and viscosity solutions, in "Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986)," vol. 10 of IMA Vol. Math. Appl., Springer, New York, (1988), 501-511. |
[26] |
P. E. Souganidis, Front propagation: Theory and applications, in "Viscosity Solutions and Applications (Montecatini Terme, 1995)," vol. 1660 of Lecture Notes in Math., Springer, Berlin, (1997), 186-242. |
[27] |
J. Spencer, Balancing games, J. Combinatorial Theory Ser. B, 23 (1977), 68-74.
doi: 10.1016/0095-8956(77)90057-0. |
show all references
References:
[1] |
N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Trans. Amer. Math. Soc., 361 (2009), 2527-2566.
doi: 10.1090/S0002-9947-08-04758-2. |
[2] |
O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.
doi: 10.1007/s00205-006-0418-5. |
[3] |
G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire, 25 (2008), 567-585.
doi: 10.1016/j.anihpc.2007.02.007. |
[4] |
G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469.
doi: 10.1137/0331021. |
[5] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283. |
[6] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Non local minimal surfaces,, 2009, ().
|
[7] |
L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Rational Mech. Anal., 180 (2010), 301-360. |
[9] |
Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. |
[10] |
R. Cont and P. Tankov, "Financial Modelling with Jump Processes," Financial Mathematics Series, Chapman & Hall/CRC, 2004. |
[11] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. |
[12] |
M. G. Crandall and P.-L. Lions, Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 183-186. |
[13] |
F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104.
doi: 10.4171/JEMS/140. |
[14] |
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[15] |
L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681. |
[16] |
N. Forcadel, C. Imbert, and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826.
doi: 10.3934/dcds.2009.23.785. |
[17] |
C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11 (2009), 153-176.
doi: 10.4171/IFB/207. |
[18] |
C. Imbert and P. E. Souganidis, Phasefield theory for fractional reaction-diffusion equations and applications, preprint, 2009, arXiv:0907.5524v1. |
[19] |
E. R. Jakobsen and K. H. Karlsen, A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137-165.
doi: 10.1007/s00030-005-0031-6. |
[20] |
R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407.
doi: 10.1002/cpa.20101. |
[21] |
R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully non-linear parabolic and elliptic equations, Comm. Pure Appl. Math., 63 (2010), 1298-1350.
doi: 10.1002/cpa.20336. |
[22] |
P.-L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," vol. 69 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, Mass., 1982. |
[23] |
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[24] |
A. Sayah, Équations de Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité, Comm. Partial Differential Equations, 16 (1991), 1057-1074. |
[25] |
H. M. Soner, Optimal control of jump-Markov processes and viscosity solutions, in "Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986)," vol. 10 of IMA Vol. Math. Appl., Springer, New York, (1988), 501-511. |
[26] |
P. E. Souganidis, Front propagation: Theory and applications, in "Viscosity Solutions and Applications (Montecatini Terme, 1995)," vol. 1660 of Lecture Notes in Math., Springer, Berlin, (1997), 186-242. |
[27] |
J. Spencer, Balancing games, J. Combinatorial Theory Ser. B, 23 (1977), 68-74.
doi: 10.1016/0095-8956(77)90057-0. |
[1] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[2] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[3] |
Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053 |
[4] |
Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 |
[5] |
Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 |
[6] |
Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure and Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793 |
[7] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021051 |
[8] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022025 |
[9] |
Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069 |
[10] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems and Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
[11] |
Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047 |
[12] |
Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217 |
[13] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065 |
[14] |
Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277 |
[15] |
Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064 |
[16] |
Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042 |
[17] |
Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100 |
[18] |
Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 |
[19] |
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 |
[20] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]