Citation: |
[1] |
A. Ben Amor and C. Remling, Direct and inverse spectral theory of one-dimensional Schrödinger operators with measures, Integr. Equ. Oper. Theory, 52 (2005), 395-417.doi: 10.1007/s00020-004-1352-2. |
[2] |
J. Bellissard, B. Iochum, E. Scoppola and D. Testard, Spectral properties of one-dimensional quasi-crystals, Commun. Math. Phys., 125 (1989), 527-543.doi: 10.1007/BF01218415. |
[3] |
M. Baake and D. Lenz, Deformation of Delone dynamical systems and pure point diffraction, J. Fourier Anal. Appl., 11 (2005), 125-150.doi: 10.1007/s00041-005-4021-1. |
[4] |
M. Baake and R. V. Moody (eds.), "Directions in Mathematical Quasicrystals," Amer. Math. Soc., Providence, RI, 2000. |
[5] |
J. Breuer and R. Frank, Singular spectrum for radial trees, preprint, Rev. Math. Phys., 21 (2009), 929-945.doi: 10.1142/S0129055X09003773. |
[6] |
R. Carmona and J. Lacroix, "Spectral Theory of Random Schrödinger Operators," Probability and Its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. |
[7] |
D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, in "Directions in Mathematical Quasicrystals," CRM Monogr. Ser., 13, Amer. Math. Soc., Providence, RI, (2000), 277-305. |
[8] |
D. Damanik and D. Lenz, Half-line eigenfunction estimates and purely singular continuous spectrum of zero Lebesgue measure, Forum Math., 16 (2004), 109-128.doi: 10.1515/form.2004.001. |
[9] |
D. Damanik and G. Stolz, A generalization of Gordon's theorem and applications to quasiperiodic Schrödinger operators, Electron. J. Differential Equations, 2000, 8 pp. (electronic) |
[10] |
D. Damanik, R. Sims and G. Stolz, Localization for one-dimensional, continuum, Bernoulli-Anderson models, Duke Math. J., 114 (2002), 59-100.doi: 10.1215/S0012-7094-02-11414-8. |
[11] |
W. G. Faris, "Self-adjoint Operators," Lecture Notes in Mathematics, Vol. 433, Springer-Verlag, Berlin-New York, 1975. |
[12] |
A. Gordon, The point spectrum of the one-dimensional Schrödinger operator, Uspehi Mat. Nauk, 31 (1976), 257-258. |
[13] |
C. Janot, "Quasicrystals: A Primer," Oxford University Press, Oxford, 1992. |
[14] |
M. Kaminaga, Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential, Forum Math., 8 (1996), 63-69.doi: 10.1515/form.1996.8.63. |
[15] |
S. Klassert, "Spektraltheoretische Untersuchungen von zufälligen Operatoren auf Delone-Mengen," Dissertation 2007, http://archiv.tu-chemnitz.de/pub/2007/0068/index.html. |
[16] |
S. Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, in "Stochastic Analysis" (Katata/Kyoto, 1982), North-Holland Math. Library, 32, North-Holland, Amsterdam, (1984), 225-247. |
[17] |
S. Kotani, Jacobi matrices with random potentials taking finitely many values, Rev. Math. Phys., 1 (1989), 129-133.doi: 10.1142/S0129055X89000067. |
[18] |
P. Kuchment, Quantum graphs. I. Some basic structures, Special section on quantum graphs, Waves Random Media, 14 (2004), S107-S128. |
[19] |
J. Lagarias, Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom., 21 (1999), 161-191.doi: 10.1007/PL00009413. |
[20] |
Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math., 135 (1999), 329-367.doi: 10.1007/s002220050288. |
[21] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, 3 (2002), 1003-1018.doi: 10.1007/s00023-002-8646-1. |
[22] |
D. Lenz, Ergodic theory and discrete one-dimensional random Schrödinger operators: Uniform existence of the Lyapunov exponent, Contemporary Mathematics, 327 (2003), 223-238. |
[23] |
D. Lenz, Aperiodic order via dynamical systems: Diffraction theory for sets of finite local complexity, Contemp. Math., 485, (Idris Assani, ed), (2009), 91-112. |
[24] |
D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in "Proc. OAMP, Constanta 2001" (eds. Combes et al), Theta Foundation, 2003. |
[25] |
D. Lenz and P. Stollmann, Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians, Duke Math. J., 131 (2006), 203-217.doi: 10.1215/S0012-7094-06-13121-6. |
[26] |
D. Lenz and P. Stollmann, Generic subsets in spaces of measures and singular continuous spectrum, in "Mathematical Physics of Quantum Mechanics," Lecture Notes in Phys., 690, Springer, Berlin, (2006), 333-341 |
[27] |
M. Lothaire, "Combinatorics on Words," Encyclopedia of Mathematics and Its Applications, 17, Addison-Wesley, Reading, Massachusetts, 1983. |
[28] |
B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci., 99 (1992), 327-334.doi: 10.1016/0304-3975(92)90357-L. |
[29] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness," Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[30] |
C. Remling, The absolutely continuous spectrum of Jacobi matrices, Annals of Math., to appear, arXiv:0706.1101. |
[31] |
C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators, Math. Phys. Anal. Geom., 10 (2007), 359-373.doi: 10.1007/s11040-008-9036-9. |
[32] |
C. Seifert, in preparation |
[33] |
M. Senechal, "Quasicrystals and Geometry," Cambridge University Press, Cambridge, 1995. |
[34] |
D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 53 (1984), 1951-1953.doi: 10.1103/PhysRevLett.53.1951. |
[35] |
B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20 (1998), 265-279.doi: 10.1007/PL00009386. |
[36] |
P. Stollmann, Smooth perturbations of regular Dirichlet forms, Proc. Amer. Math. Soc., 116 (1992), 747-752. |
[37] |
P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal., 5 (1996), 109-138.doi: 10.1007/BF00396775. |
[38] |
A. Sütö, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys., 111 (1987), 409-415.doi: 10.1007/BF01238906. |
[39] |
A. Sütö, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Stat. Phys., 56 (1989), 525-531.doi: 10.1007/BF01044450. |