\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation

Abstract Related Papers Cited by
  • In a recent paper [4], we showed that the phenomenon of resonant tunneling, well known in linear quantum mechanical scattering theory, takes place for fast solitons of the Nonlinear Schrödinger (NLS) equation in the presence of certain large potentials. Here, we illustrate numerically this situation for the one dimensional cubic NLS equation with two classes of potentials, namely the 'box' potential and a repulsive 2-delta potential. In particular, under the resonant condition, we show that the transmitted wave is close to a soliton, calculate the transmitted mass of the solution and show that it converges to the total mass of the solution as the velocity of the soliton is increased.
    Mathematics Subject Classification: Primary: 35Q55, 37K40; Secondary: 35Q51, 65M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials, J. Math. Phys., 49 (2008), 032101.doi: 10.1063/1.2837429.

    [2]

    W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations, Nonlinearity, 22 (2009), 747-763.doi: 10.1088/0951-7715/22/4/004.

    [3]

    W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation, Commun. Math. Phys., 291 (2009), 151-176.doi: 10.1007/s00220-009-0871-8.

    [4]

    W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers, to appear in Canad. J. Math., (2010).

    [5]

    G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numerische Mathematik, 59 (1991), 31-53.doi: 10.1007/BF01385769.

    [6]

    G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput., 25 (2003), 186-212.doi: 10.1137/S1064827597332041.

    [7]

    J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett., 7 (2000), 329-342.

    [8]

    J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642.doi: 10.1007/s00220-004-1128-1.

    [9]

    J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Modern Dynamics, 1 (2007), 689-718.

    [10]

    J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials, IMRN, (2008), ArtID 026, 36pp.

    [11]

    J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Commun. Math. Phys., 274 (2007), 187-216.doi: 10.1007/s00220-007-0261-z.

    [12]

    J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials, Journal of Nonlinear Science, 17 (2007), 349-367.doi: 10.1007/s00332-006-0807-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return