October  2011, 29(4): 1637-1649. doi: 10.3934/dcds.2011.29.1637

Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation

1. 

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

2. 

Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada, Canada

Received  December 2009 Revised  September 2010 Published  December 2010

In a recent paper [4], we showed that the phenomenon of resonant tunneling, well known in linear quantum mechanical scattering theory, takes place for fast solitons of the Nonlinear Schrödinger (NLS) equation in the presence of certain large potentials. Here, we illustrate numerically this situation for the one dimensional cubic NLS equation with two classes of potentials, namely the 'box' potential and a repulsive 2-delta potential. In particular, under the resonant condition, we show that the transmitted wave is close to a soliton, calculate the transmitted mass of the solution and show that it converges to the total mass of the solution as the velocity of the soliton is increased.
Citation: Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637
References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

show all references

References:
[1]

W. K. Abou Salem, Solitary wave dynamics in time-dependent potentials,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2837429.  Google Scholar

[2]

W. K. Abou Salem, Effective dynamics of solitons in the presence of rough nonlinear perturbations,, Nonlinearity, 22 (2009), 747.  doi: 10.1088/0951-7715/22/4/004.  Google Scholar

[3]

W. K. Abou Salem, J. Fröhlich and I. M. Sigal, Colliding solitons for the nonlinear Schrödinger equation,, Commun. Math. Phys., 291 (2009), 151.  doi: 10.1007/s00220-009-0871-8.  Google Scholar

[4]

W. K. Abou Salem and C. Sulem, Resonant tunneling of fast solitons through large potential barriers,, to appear in Canad. J. Math., (2010).   Google Scholar

[5]

G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numerische Mathematik, 59 (1991), 31.  doi: 10.1007/BF01385769.  Google Scholar

[6]

G. D. Akrivis, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation,, SIAM J. Sci. Comput., 25 (2003), 186.  doi: 10.1137/S1064827597332041.  Google Scholar

[7]

J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential,, Math. Res. Lett., 7 (2000), 329.   Google Scholar

[8]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613.  doi: 10.1007/s00220-004-1128-1.  Google Scholar

[9]

J. Holmer and M. Zworski, Slow soliton interaction with delta impurities,, J. Modern Dynamics, 1 (2007), 689.   Google Scholar

[10]

J. Holmer and M. Zworski, Soliton interaction with slowly varying potentials,, IMRN, (2008).   Google Scholar

[11]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Commun. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials,, Journal of Nonlinear Science, 17 (2007), 349.  doi: 10.1007/s00332-006-0807-9.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[5]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[6]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[7]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[8]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[9]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[20]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]