\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reducibility of skew-product systems with multidimensional Brjuno base flows

Abstract Related Papers Cited by
  • We develop a renormalization method that applies to the problem of the local reducibility of analytic skew-product flows on Td $\times$ SL(2,R). We apply the method to give a proof of a reducibility theorem for these flows with Brjuno base frequency vectors.
    Mathematics Subject Classification: Primary: 37E20; Secondary: 37C10, 37C60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolity of quasiperiodic Schrödinger cocycles, Ann. Math., 164 (2006), 911-940.doi: doi:10.4007/annals.2006.164.911.

    [2]

    A. Avila and S. Jitomirskaya, Almost localization and almost reducibility, Journal of the European Math. Soc., 12 (2010), 93-131.doi: doi:10.4171/JEMS/191.

    [3]

    N. N. Bogoljubov, Ju. A. Mitropolitskii and A. M. Samoilenko, "Methods of Accelarated Convergence in Nonlinear Mechanics,'' Springer Verlag, New York, 1976.

    [4]

    J. Bourgain, On the spectrum of lattice Schrödinger operators with deterministic potential, J. Anal. Math., 88 (2002), 221-254.doi: doi:10.1007/BF02786578.

    [5]

    A. D. Brjuno, Analytic form of differential equations I, Trudy Moskov. Mat. Obshch. 25 (1971), 119-262.

    [6]

    A. D. Brjuno, Analytic form of differential equations II, Trudy Moskov. Mat. Obshch. 26 (1972), 199-239.

    [7]

    E. I. Dinaburg and Ja. G. Sinai, The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal. i Priložen., 9 (1975), 8-21.

    [8]

    L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., 146 (1992), 447-482.doi: doi:10.1007/BF02097013.

    [9]

    L. H. Eliasson, Linear quasi-periodic systems-reducibility and almost reducibility, in "XIVth International Congress on Mathematical Physics,'' World Sci. Publ., (2005), 195-205.

    [10]

    G. Gallavotti, Twistless KAM tori, Comm. Math. Phys., 164 (1994), 145-156.doi: doi:10.1007/BF02108809.

    [11]

    G. Gallavotti and G. Gentile, Degenerate elliptic resonances, Comm. Math. Phys., 257 (2005), 319-362.doi: doi:10.1007/s00220-005-1325-6.

    [12]

    G. Gentile, Resummation of perturbation series and reducibility for Bryuno Skew-product flows, J. Stat. Phys., 125 (2006), 317-357.doi: doi:10.1007/s10955-006-9127-6.

    [13]

    S. Hadj Amor, Sur la densité d'état de l'operateur de Schrödinger quasi-périodique unidimensionnel, C.R. Acad. Sci. Paris, Ser. I, 343 (2006), 423-426.

    [14]

    E. Hille and R. S. Phillips, "Functional Analysis And Semi-Groups,'' AMS Colloquium Publications, 31, Rev. ed. of 1957, Amer. Math. Soc., Providence, RI, 1974.

    [15]

    X. Hou and J. You, The rigidity of reducibility of cocycles on $\SO (N,\R)$, Nonlinearity, 21 (2008), 2317-2330.doi: doi:10.1088/0951-7715/21/10/006.

    [16]

    S. B. Katok, Linear extensions of dynamical systems and the reducibility problem, Matematicheskie Zametki, 8 (1970), 451-462.

    [17]

    K. Khanin, J. Lopes Dias and J. Marklof, Multidimensional continued fractions, dynamic renormalization and KAM theory, Commun. Math. Phys., 270 (2007), 197-231.doi: doi:10.1007/s00220-006-0125-y.

    [18]

    H. Koch and S. Kocić, Renormalization of vector fields and Diophantine invariant tori, Ergod. Theor. Dynam. Sys., 28 (2008), 1559-1585.doi: doi:10.1017/S0143385707000892.

    [19]

    H. Koch and S. Kocić, A renormalization group aproach to quasiperiodic motion with Brjuno frequencies, Ergod. Theor. Dynam. Sys., 30 (2010), 1131-1146.doi: doi:10.1017/S014338570900042X.

    [20]

    H. Koch and J. Lopes Dias, Renormalization of Diophantine skew flows, with applications to the reducibility problem, Discrete Cont. Dyn. Sys., 21 (2008), 477-500.

    [21]

    S. Kocić, Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori, Nonlinearity, 18 (2005), 1-32.

    [22]

    R. Krikorian, Réducibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts, Ann. Sci. de l'É.N.S. 4$^e$ série, 32 (1999), 187-240.

    [23]

    R. Krikorian, Réducibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, 259 (1999), 1-216.

    [24]

    R. Krikorian, $C^0$-densité globale des systèmes produits-croisés sur le cercle réductibles, Ergod. Theor. Dyn. Sys., 19 (1999), 61-100.doi: doi:10.1017/S0143385799120972.

    [25]

    R. Krikorian, Global density of reducible quasi-periodic cocycles on $\T^1\times\SU(2)$, Ann. of Math., 154 (2001), 269-326.doi: doi:10.2307/3062098.

    [26]

    J. C. Lagarias, Geodesic multidimensional continued fractions, Proc. London Math. Soc. (3), 69 (1994), 464-488.doi: doi:10.1112/plms/s3-69.3.464.

    [27]

    J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.doi: doi:10.1016/j.jde.2006.07.021.

    [28]

    J. Lopes Dias, Local conjugacy classes for analytic torus flows, J. Differential Equations, 245 (2008), 468-489.doi: doi:10.1016/j.jde.2008.04.006.

    [29]

    J. Moser, Convergent series expansions for quasi-periodic motions, Mathematische Annalen, 169 (1967), 136-176.doi: doi:10.1007/BF01399536.

    [30]

    J. Puig and C. Simó, Analytic families of reducible linear quasi-periodic differential equations, Ergod. Th. and Dynam. Sys., 26 (2006), 481-524.doi: doi:10.1017/S0143385705000362.

    [31]

    M. Rychlik, Renormalization of cocycles and linear ODE with almost-periodic coefficients, Invent. Math., 110 (1992), 173-206.doi: doi:10.1007/BF01231330.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return