Advanced Search
Article Contents
Article Contents

An approximation theorem for maps between tiling spaces

Abstract Related Papers Cited by
  • We show that every continuous map from one translationally finite tiling space to another can be approximated by a local map. If two local maps are homotopic, then the homotopy can be chosen so that every interpolating map is also local.
    Mathematics Subject Classification: Primary: 52C23; Secondary: 37B05, 54H20.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Barge, B. Diamond, J. Hunton and L. SadunCohomology of substitution tiling spaces, preprint, arXiv:0811.2507, to appear in Ergodic Theory and Dynamical Systems.


    J. Kellondonk, Pattern-equivariant functions and cohomology, J. Phys. A, 36 (2003), 1-8.


    J. Kellendonk and I. Putnam, The Ruelle-Sullivan map for $\R^n$ actions, Math. Ann., 344 (2006), 693-711.doi: doi:10.1007/s00208-005-0728-1.


    D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995.doi: doi:10.1017/CBO9780511626302.


    K. Petersen, Factor maps between tiling dynamical systems, Forum Math., 11 (1999), 503-512.doi: doi:10.1515/form.1999.011.


    N. Priebe, Towards a characterization of self-similar tilings via derived Voronoi tesselations, Geometriae Dedicata, 79 (2000), 239-265.doi: doi:10.1023/A:1005191014127.


    C. Radin, The pinwheel tilings of the plane, Annals of Math., 139 (1994), 661-702.doi: doi:10.2307/2118575.


    B. Rand, "Pattern-Equivariant Cohomology of Tiling Spaces With Rotations," Ph.D. thesis in Mathematics, University of Texas, 2006.


    C. Radin and L. Sadun, Isomorphisms of hierarchical structures, Ergodic Theory and Dynamical Systems, 21 (2001), 1239-1248.doi: doi:10.1017/S0143385701001572.


    L. Sadun, "Topology of Tiling Spaces," University Lecture Series of the American Mathematical Society, 46, 2008.

  • 加载中

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint