Citation: |
[1] |
A. V. Arutyunov and S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon, Systems Control Lett., 26 (1995), 267-273.doi: doi:10.1016/0167-6911(95)00021-Z. |
[2] |
A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim., 35 (1997), 930-952.doi: doi:10.1137/S036301299426996X. |
[3] |
J. Abadie, On the Kuhn-Tucker theorem, in "Nonlinear Programming" (J. Abadie, ed.), North Holland, Amsterdam, 1967, 21-56. |
[4] |
A. V. Arutyunov, On necessary conditions for optimality in a problem with phase constraints, Dokl. Akad. Nauk SSSR, 280 (1985), 1033-1037. |
[5] |
Aram V. Arutyunov, "Optimality Conditions. Abnormal and Degenerate Problems," Mathematics and its Applications, vol. 526, Kluwer Academic Publishers, Dordrecht, 2000, Translated from the Russian by S. A. Vakhrameev. |
[6] |
A. V. Arutyunov and N. T. Tynyanskiy, The maximum principle in a problem with phase constraints, Izv. Akad. Nauk SSSR Tekhn. Kibernet, (1984), 60-68, 235. |
[7] |
P. Bettiol and H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems, J. Differential Equations, 243 (2007), 256-269.doi: doi:10.1016/j.jde.2007.05.005. |
[8] |
A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703 (electronic).doi: doi:10.1137/S0363012903430585. |
[9] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983, A Wiley-Interscience Publication. |
[10] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. |
[11] |
A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems under constraints, Dokl. Akad. Nauk SSSR, 149 (1963), 759-762. |
[12] |
M. d. R. de Pinho, R. B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints, IMA J. Math. Control Inform., 18 (2001), 189-205.doi: doi:10.1093/imamci/18.2.189. |
[13] |
M. M. A. Ferreira, F. A. C. C. Fontes and R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control problems with state constraints, J. Math. Anal. Appl., 233 (1999), 116-129.doi: doi:10.1006/jmaa.1999.6270. |
[14] |
F. A. C. C. Fontes, "Optimisation-based Control of Constrained Nonlinear Systems," Ph.D. thesis, Imperial College of Science Technology and Medicine, University of London, London SW7 2BY, U.K., 1999. |
[15] |
F. A. C. C. Fontes, "Normality in the Necessary Conditions of Optimality for Control Problems with State Constraints," Proceedings of the IASTED Conference on Control and Applications (Cancun, Mexico), 2000. |
[16] |
F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers, Systems Control Lett., 42 (2001), 127-143.doi: doi:10.1016/S0167-6911(00)00084-0. |
[17] |
F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints, in "Nonlinear Control Systems" (A. B. Kurzhanski and A. L. Fradkov, eds.), (2002), 45-50. |
[18] |
M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?, J. Math. Anal. Appl., 187 (1994), 438-467.doi: doi:10.1006/jmaa.1994.1366. |
[19] |
F. John, "Extremum Problems as Inequalities as Subsidiary Conditions," Studies and Essays: Courant Anniversary Volume (K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker, eds.), Interscience Publishers, New York, 1948. |
[20] |
H. W. Kuhn and A. W. Tucker, Nonlinear programming, in "Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability" (J. Neyman, ed.), University of California Press, Berkeley, 1951, 481-492. |
[21] |
K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems, Optimization, 52 (2003), 75-91.doi: doi:10.1080/0233193021000058940. |
[22] |
O. L. Mangasarian, "Nonlinear Programming," McGraw-Hill, New York, 1969. |
[23] |
B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation. I," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006, Basic theory. |
[24] |
L. W. Neustadt, A general theory of extremals, Journal of Computer and System Sciences, 3 (1969), 57-92. |
[25] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, New York, 1962. |
[26] |
F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA J. Math. Control Inform., 16 (1999), 335-351.doi: doi:10.1093/imamci/16.4.335. |
[27] |
F. Rampazzo and R. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim., 39 (2000), 989-1007 (electronic).doi: doi:10.1137/S0363012998340223. |
[28] |
R. Vinter, "Optimal Control," Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2000. |
[29] |
R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints, J. Math. Anal. Appl., 89 (1982), 212-232.doi: doi:10.1016/0022-247X(82)90099-3. |
[30] |
R. B. Vinter and H. Zheng, Necessary conditions for optimal control problems with state constraints, Trans. Amer. Math. Soc., 350 (1998), 1181-1204.doi: doi:10.1090/S0002-9947-98-02129-1. |
[31] |
J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972. |