\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Euler-Lagrange equations for composition functionals in calculus of variations on time scales

Abstract Related Papers Cited by
  • In this paper we consider the problem of the calculus of variations for a functional which is the composition of a certain scalar function $H$ with the delta integral of a vector valued field $f$, i.e., of the form $H (\int_{a}^{b}f(t,x^{\sigma}(t),x^{\Delta}(t))\Delta t)$. Euler-Lagrange equations, natural boundary conditions for such problems as well as a necessary optimality condition for isoperimetric problems, on a general time scale, are given. A number of corollaries are obtained, and several examples illustrating the new results are discussed in detail.
    Mathematics Subject Classification: Primary: 49K05, 39A12; Secondary: 49K99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal, M. Bohner and P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 99 (1999), 153-166.doi: doi:10.1016/S0096-3003(98)00004-6.

    [2]

    C. D. Ahlbrandt and C. Morian, Partial differential equations on time scales, J. Comput. Appl. Math., 141 (2002), 35-55.doi: doi:10.1016/S0377-0427(01)00434-4.

    [3]

    R. Almeida and D. F. M. Torres, Isoperimetric problems on time scales with nabla derivatives, J. Vib. Control, 15 (2009), 951-958.doi: doi:10.1177/1077546309103268.

    [4]

    F. M. Atici, D. C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling, 43 (2006), 718-726.doi: doi:10.1016/j.mcm.2005.08.014.

    [5]

    F. M. Atici and F. Uysal, A production-inventory model of HMMS on time scales, Appl. Math. Lett., 21 (2008), 236-243.doi: doi:10.1016/j.aml.2007.03.013.

    [6]

    B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in "Qualitative Theory of Differential Equations (Szeged, 1988)," Colloq. Math. Soc. János Bolyai, 53, North-Holland, Amsterdam, (1990), 37-56.

    [7]

    Z. Bartosiewicz and D. F. M. Torres, Noether's theorem on time scales, J. Math. Anal. Appl., 342 (2008), 1220-1226.doi: doi:10.1016/j.jmaa.2008.01.018.

    [8]

    M. Bohner, Calculus of variations on time scales, Dynam. Systems Appl., 13 (2004), 339-349.

    [9]

    M. Bohner, R. A. C. Ferreira and D. F. M. Torres, Integral inequalities and their applications to the calculus of variations on time scales, Math. Inequal. Appl., 13 (2010), 511-522.

    [10]

    M. Bohner and G. Sh. Guseinov, Double integral calculus of variations on time scales, Comput. Math. Appl., 54 (2007), 45-57.doi: doi:10.1016/j.camwa.2006.10.032.

    [11]

    M. Bohner and A. Peterson, "Dynamic Equations on Time Scales," Birkhäuser Boston, Boston, MA, 2001.

    [12]

    M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales," Birkhäuser Boston, Boston, MA, 2003.

    [13]

    E. Castillo, A. Luceno and P. Pedregal, Composition functionals in calculus of variations. Application to products and quotients, Math. Models Methods Appl. Sci., 18 (2008), 47-75.doi: doi:10.1142/S0218202508002607.

    [14]

    T. Ernst, The different tongues of $q$-calculus, Proc. Est. Acad. Sci., 57 (2008), 81-99.doi: doi:10.3176/proc.2008.2.03.

    [15]

    R. A. C. Ferreira and D. F. M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat., 9 (2007), 65-73.

    [16]

    R. A. C. Ferreira and D. F. M. Torres, Higher-order calculus of variations on time scales, in "Mathematical Control Theory and Finance" (eds. A. Sarychev, A. Shiryaev, M. Guerra and M. R. Grossinho), Springer, Berlin, (2008), 149-159.doi: doi:10.1007/978-3-540-69532-5_9.

    [17]

    R. A. C. Ferreira and D. F. M. Torres, Isoperimetric problems of the calculus of variations on time scales, in "Nonlinear Analysis and Optimization II" (eds. A. Leizarowitz, B. S. Mordukhovich, I. Shafrir and A. J. Zaslavski), Contemporary Mathematics, vol. 514, Amer. Math. Soc., Providence, RI, (2010), 123-131.

    [18]

    R. Hilscher and V. Zeidan, Calculus of variations on time scales: Weak local piecewise $C_{rd}^1$ solutions with variable endpoints, J. Math. Anal. Appl., 289 (2004), 143-166.doi: doi:10.1016/j.jmaa.2003.09.031.

    [19]

    V. Kac and P. Cheung, "Quantum Calculus," Springer, New York, 2002.

    [20]

    V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, "Dynamic Systems on Measure Chains," Kluwer Acad. Publ., Dordrecht, 1996.

    [21]

    A. B. Malinowska and D. F. M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales, J. Math. Sci. (N. Y.), 161 (2009), 803-810.doi: doi:10.1007/s10958-009-9601-1.

    [22]

    A. B. Malinowska and D. F. M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition, Proc. Est. Acad. Sci., 58 (2009), 205-212.doi: doi:10.3176/proc.2009.4.02.

    [23]

    A. B. Malinowska and D. F. M. Torres, The delta-nabla calculus of variations, Fasc. Math., 44 (2010), 75-83.

    [24]

    A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.

    [25]

    A. B. Malinowska and D. F. M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales, Appl. Math. Comput., 217 (2010), 1158-1162.doi: doi:10.1016/j.amc.2010.01.015.

    [26]

    N. Martins and D. F. M. Torres, Calculus of variations on time scales with nabla derivatives, Nonlinear Anal., 71 (2009), e763-e773.doi: doi:10.1016/j.na.2008.11.035.

    [27]

    B. van Brunt, "The Calculus of Variations," Universitext, Springer-Verlag, New York, 2004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return