\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps

Abstract Related Papers Cited by
  • The notions of $V$-Jacobian and $V$-co-Jacobian are introduced for locally Lipschitzian functions acting between arbitrary normed spaces $X$ and $Y$, where $V$ is a subspace of the dual space $Y^*$. The main results of this paper provide a characterization, calculus rules and also the computation of these Jacobians of piecewise smooth functions.
    Mathematics Subject Classification: 49J52, 49A52, 58C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math., 57 (1976), 147-190.

    [2]

    J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon), 10 (1973), 29-39, Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, 29-39.

    [3]

    F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), 97-102.

    [4]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley & Sons, Inc., New York, 1983.

    [5]

    H. Halkin, Interior mapping theorem with set-valued derivatives, J. Analyse Math., 30 (1976), 200-207.doi: doi:10.1007/BF02786714.

    [6]

    H. Halkin, Mathematical programming without differentiability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, (1976), 279-287.

    [7]

    A. D. Ioffe, Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc., 266 (1981), 1-56.

    [8]

    H. Th. Jongen and D. Pallaschke, On linearization and continuous selections of functions, Optimization, 19 (1988), 343-353.doi: doi:10.1080/02331938808843350.

    [9]

    S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc., 86 (1957), 70-90.

    [10]

    D. Klatte and B. Kummer, Nonsmooth equations in optimization, in "Regularity, Calculus, Methods and Applications," Nonconvex Optimization and its Applications, vol. 60, Kluwer Academic Publishers, Dordrecht, 2002.

    [11]

    L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions, and metric projections, J. Math. Anal. Appl., 188 (1994), 346-386.doi: doi:10.1006/jmaa.1994.1431.

    [12]

    L. Kuntz and S. Scholtes, Qualitative aspects of the local approximation of a piecewise differentiable function, Nonlinear Anal., 25 (1995), 197-215.doi: doi:10.1016/0362-546X(94)00202-S.

    [13]

    G. Lebourg, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc., 256 (1979), 125-144.

    [14]

    B. S. Mordukhovich, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR, 254 (1980), 1072-1076.

    [15]

    B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl., 183 (1994), 250-288.doi: doi:10.1006/jmaa.1994.1144.

    [16]

    B. S. Mordukhovich, Coderivatives of set-valued mappings: Calculus and applications, proceedings of the "Second World Congress of Nonlinear Analysts," Part 5 (Athens, 1996), vol. 30 (1997), 3059-3070.

    [17]

    B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I. Basic Theory," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006.

    [18]

    J.-S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Math. Oper. Res., 21 (1996), 401-426.doi: doi:10.1287/moor.21.2.401.

    [19]

    Zs. Páles and V. Zeidan, Generalized Jacobian for functions with infinite dimensional range and domain, Set-Valued Anal., 15 (2007), 331-375.doi: doi:10.1007/s11228-007-0043-y.

    [20]

    Zs. Páles and V. Zeidan, Infinite dimensional Clarke generalized Jacobian, J. Convex Anal., 14 (2007), 433-454.

    [21]

    Zs. Páles and V. Zeidan, Infinite dimensional generalized Jacobian: Properties and calculus rules, J. Math. Anal. Appl., 344 (2008), 55-75.doi: doi:10.1016/j.jmaa.2008.02.044.

    [22]

    Zs. Páles and V. Zeidan, The core of the infinite dimensional generalized Jacobian, J. Convex Anal., 16 (2009), 321-349.

    [23]

    Zs. Páles and V. Zeidan, Co-Jacobian for Lipschitzian maps, Set-Valued and Variational Anal., 18 (2010), 57-78.doi: doi:10.1007/s11228-009-0130-3.

    [24]

    D. Ralph and S. Scholtes, Sensitivity analysis of composite piecewise smooth equations, Math. Programming Ser. B, 76 (1997), 593-612.doi: doi:10.1007/BF02614400.

    [25]

    D. Ralph and H. Xu, Implicit smoothing and its application to optimization with piecewise smooth equality constraints, J. Optim. Theory Appl., 124 (2005), 673-699.doi: doi:10.1007/s10957-004-1180-1.

    [26]

    R. T. Rockafellar, A property of piecewise smooth functions, Comput. Optim. Appl., 25 (2003), 247-250, A tribute to Elijah (Lucien) Polak.doi: doi:10.1023/A:1022921624832.

    [27]

    S. Scholtes, "Introduction to Piecewise Differentiable Equations," Habilitation thesis, University of Karlsruhe, Karlsruhe, Germany, 1994.

    [28]

    T. H. Sweetser, A minimal set-valued strong derivative for vector-valued Lipschitz functions, J. Optimization Theory Appl., 23 (1977), 549-562.doi: doi:10.1007/BF00933296.

    [29]

    L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions, Ann. Mat. Pura Appl. (4), 125 (1980), 157-192.doi: doi:10.1007/BF01789411.

    [30]

    L. Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Anal., 6 (1982), 1037-1053.doi: doi:10.1016/0362-546X(82)90074-8.

    [31]

    J. Warga, Derivative containers, inverse functions, and controllability, in "Calculus of Variations and Control Theory" (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Academic Press, New York, (1976), 13-45; errata, p. 46. Math. Res. Center, Univ. Wisconsin, Publ. No. 36.

    [32]

    J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl., 81 (1981), 545-560; (Errata: ibid. 82 (1982), 582-583).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return