July  2011, 29(3): 693-736. doi: 10.3934/dcds.2011.29.693

Simultaneous continuation of infinitely many sinks at homoclinic bifurcations

1. 

Instituto de Matemática y Estadística Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay

2. 

Instituto de Matemática y Estadistica Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay

3. 

Instituto de Matemática y Estadistica Prof. Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Received  June 2009 Revised  August 2010 Published  November 2010

We prove that the $C^3$ diffeomorphisms on surfaces, exhibiting infinitely many sinks near the generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed along an infinite dimensional manifold of $C^3$ diffeomorphisms such that infinitely many sinks persist simultaneously. On the other hand, if they are perturbed along one-parameter families that unfold generically the quadratic tangencies, then at most a finite number of those sinks have continuation.
Citation: Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693
References:
[1]

E. Colli, Infinitely many coexisting strange attractors, Annales de l'I.H.P. Analyse non-linéaire, 15 (1998), 539-579.  Google Scholar

[2]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[3]

W. de Melo, Structural stability of diffeomorphisms on two-manifolds, Inventiones Math, 21 (1973), 233-246. doi: 10.1007/BF01390199.  Google Scholar

[4]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have inifinitely sinks and hyperbolicity of periodic points near an homoclinic tangency, Adv. Math., 208 (2007), 710-797. doi: 10.1016/j.aim.2006.03.012.  Google Scholar

[5]

I. Kan, H. Koçak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Ann. Math., 136 (1992), 219-252. doi: 10.2307/2946605.  Google Scholar

[6]

S. Newhouse, Non density of Axiom A on $S^2$, Proc. A.M.S. Symp. Pure Math., 14 (1970), 191-202. doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[7]

S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.  Google Scholar

[8]

S. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. IHÉS, 50 (1979), 101-151.  Google Scholar

[9]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 335-347.  Google Scholar

[10]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynanics of Homoclinic Bifurcations," University Press, Cambridge, 1993.  Google Scholar

[11]

C. Robinson, Bifurcation to infinitely many sinks, Comm Math Phys., 90 (1983), 433-459. doi: 10.1007/BF01206892.  Google Scholar

[12]

M. Shub, "Global Stability of Dynamical Systems," Springer Verlag, Berlin, New York, (1987), 23-27.  Google Scholar

[13]

S. Smale, Diffeomorphisms with many periodic points, in " Differential and Combinatorial Topology," Princeton Univ. Press, (1965), 63-80.  Google Scholar

[14]

L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys., 106 (1986), 635-657. doi: 10.1007/BF01463400.  Google Scholar

[15]

J. A. Yorke and K. T. Alligood, Cascades of period doubling bifurcations: A prerequisite for horseshoes, Bull AMS, 9 (1983), 319-322. doi: 10.1090/S0273-0979-1983-15191-1.  Google Scholar

show all references

References:
[1]

E. Colli, Infinitely many coexisting strange attractors, Annales de l'I.H.P. Analyse non-linéaire, 15 (1998), 539-579.  Google Scholar

[2]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[3]

W. de Melo, Structural stability of diffeomorphisms on two-manifolds, Inventiones Math, 21 (1973), 233-246. doi: 10.1007/BF01390199.  Google Scholar

[4]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have inifinitely sinks and hyperbolicity of periodic points near an homoclinic tangency, Adv. Math., 208 (2007), 710-797. doi: 10.1016/j.aim.2006.03.012.  Google Scholar

[5]

I. Kan, H. Koçak and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits, Ann. Math., 136 (1992), 219-252. doi: 10.2307/2946605.  Google Scholar

[6]

S. Newhouse, Non density of Axiom A on $S^2$, Proc. A.M.S. Symp. Pure Math., 14 (1970), 191-202. doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[7]

S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.  Google Scholar

[8]

S. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. IHÉS, 50 (1979), 101-151.  Google Scholar

[9]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 335-347.  Google Scholar

[10]

J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynanics of Homoclinic Bifurcations," University Press, Cambridge, 1993.  Google Scholar

[11]

C. Robinson, Bifurcation to infinitely many sinks, Comm Math Phys., 90 (1983), 433-459. doi: 10.1007/BF01206892.  Google Scholar

[12]

M. Shub, "Global Stability of Dynamical Systems," Springer Verlag, Berlin, New York, (1987), 23-27.  Google Scholar

[13]

S. Smale, Diffeomorphisms with many periodic points, in " Differential and Combinatorial Topology," Princeton Univ. Press, (1965), 63-80.  Google Scholar

[14]

L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys., 106 (1986), 635-657. doi: 10.1007/BF01463400.  Google Scholar

[15]

J. A. Yorke and K. T. Alligood, Cascades of period doubling bifurcations: A prerequisite for horseshoes, Bull AMS, 9 (1983), 319-322. doi: 10.1090/S0273-0979-1983-15191-1.  Google Scholar

[1]

Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623

[2]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[3]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[4]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[5]

Vilmos Komornik, Anna Chiara Lai, Paola Loreti. Simultaneous observability of infinitely many strings and beams. Networks & Heterogeneous Media, 2020, 15 (4) : 633-652. doi: 10.3934/nhm.2020017

[6]

Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133

[7]

Joseph Iaia. Existence of infinitely many solutions for semilinear problems on exterior domains. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4269-4284. doi: 10.3934/cpaa.2020193

[8]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[9]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[10]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[11]

Kariane Calta, Thomas A. Schmidt. Infinitely many lattice surfaces with special pseudo-Anosov maps. Journal of Modern Dynamics, 2013, 7 (2) : 239-254. doi: 10.3934/jmd.2013.7.239

[12]

Alberto Boscaggin, Anna Capietto. Infinitely many solutions to superquadratic planar Dirac-type systems. Conference Publications, 2009, 2009 (Special) : 72-81. doi: 10.3934/proc.2009.2009.72

[13]

Zhibin Liang, Xuezhi Zhao. Self-maps on flat manifolds with infinitely many periods. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2223-2232. doi: 10.3934/dcds.2012.32.2223

[14]

Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733

[15]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[16]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[17]

Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265

[18]

Dušan D. Repovš. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 401-411. doi: 10.3934/dcdss.2019026

[19]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[20]

Alexandre A. P. Rodrigues. Infinitely many multi-pulses near a bifocal cycle. Conference Publications, 2015, 2015 (special) : 954-964. doi: 10.3934/proc.2015.0954

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

[Back to Top]