\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solvability of the free boundary value problem of the Navier-Stokes equations

Abstract Related Papers Cited by
  • In this paper, we study the incompressible Navier-Stokes equations on a moving domain in $\mathbb{R}^{3}$ of finite depth, bounded above by the free surface and bounded below by a solid flat bottom. We prove that there exists a unique, global-in-time solution to the problem provided that the initial velocity field and the initial profile of the boundary are sufficiently small in Sobolev spaces.
    Mathematics Subject Classification: 35K51, 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adams, "Sobolev Spaces," Academic Press, INC, 1975.

    [2]

    D. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Commun. Math. Sci, 5 (2007), 391-430.

    [3]

    T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure. Appl. Math, 34 (1981), 359-392.doi: 10.1002/cpa.3160340305.

    [4]

    T. BealeLarge time regularity of viscous surface waves, Arch. Rational Mech. Anal, 84 (1983/84), 307-342.

    [5]

    A. Bertozzi and A. Majda, "Vorticity and Incompressible Flow," Cambridge University Press, 2002.

    [6]

    D. Coutand and S. ShkollerUnique solvability of the free boundary Navier-Stokes equations with surface tension, preprint, arXiv:math/0212116.

    [7]

    D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc, 20 (2007), 829-930.doi: 10.1090/S0894-0347-07-00556-5.

    [8]

    W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 615-667.doi: 10.1016/S0294-1449(97)80128-X.

    [9]

    R. Danchin, Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana, 21 (2005), 863-888.

    [10]

    D. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Part. Diff. Eq, 10 (1987), 1175-1201.

    [11]

    D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc, 18 (2005), 605-654.doi: 10.1090/S0894-0347-05-00484-4.

    [12]

    T. Lundgren and P. Koumoutsakos, On the generation of vorticity at a free surface, J. Fluid Mech, 382 (1999), 351-366.doi: 10.1017/S0022112098003978.

    [13]

    D. Sylvester, Large time existence of small viscous surface waves without surface tension, Comm. Partial Differential Equations, 15 (1990), 823-903.doi: 10.1080/03605309908820709.

    [14]

    J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math, 61 (2008), 698-744.doi: 10.1002/cpa.20213.

    [15]

    J. Shatah and C. ZengLocal wellposedness of interface problem, preprint.

    [16]

    V. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, J. Soviet Math, 40 (1988), 672-686.doi: 10.1007/BF01094193.

    [17]

    V. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid, Math. USSR-Izv, 31 (1988), 381-405.doi: 10.1070/IM1988v031n02ABEH001081.

    [18]

    A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rational Mech. Anal, 30 (1995), 303-314.doi: 10.1007/BF00375142.

    [19]

    R. Temam, "Navier-Stokes Equations - Theory and Numerical Analysis," AMS, 2001.

    [20]

    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math, 130 (1997), 39-72.doi: 10.1007/s002220050177.

    [21]

    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc, 12 (1999), 445-495.doi: 10.1090/S0894-0347-99-00290-8.

    [22]

    P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math, 61 (2008), 877-940.doi: 10.1002/cpa.20226.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(306) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return