\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An equivalent path functional formulation of branched transportation problems

Abstract Related Papers Cited by
  • We consider two models for branched transport: the one introduced in Bernot et al. (Publ Mat 49:417-451, 2005), which makes use of a functional defined on measures over the space of Lipschitz paths, and the path functional model presented in Brancolini et al. (J Eur Math Soc 8:415-434, 2006), where one minimizes some suitable action functional defined over the space of measure-valued Lipschitz curves, getting sort of a Riemannian metric on the space of probabilities, favouring atomic measures, with a cost depending on the masses of each of their atoms. We prove that modifying the latter model according to Brasco (Ann Mat Pura Appl 189:95-125, 2010), then the two models turn out to be equivalent.
    Mathematics Subject Classification: Primary: 49Q20; Secondary: 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," 2nd edition, Lectures in Mathematics ETH, Zürich, Birkhäuser Verlag, Basel, 2008.

    [2]

    L. Ambrosio and P. Tilli, "Selected topics on 'Analysis in Metric Spaces'," Appunti dei corsi tenuti da docenti della Scuola, Scuola Normale Superiore, Pisa, 2000.

    [3]

    M. Bernot, V. Caselles and J.-M. Morel, Traffic plans, Publ. Mat., 49 (2005), 417-451.

    [4]

    M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation networks, Calc. Var. Partial Differential Equations, 2 (2008), 279-371.doi: 10.1007/s00526-007-0139-0.

    [5]

    M. Bernot, V. Caselles and J.-M. Morel, "Optimal Transportation Networks. Models and Theory," Lecture Notes in Mathemathics, 1955, Springer-Verlag, Berlin, 2009.

    [6]

    M. Bernot and A. Figalli, Synchronized traffic plans and stability of optima, ESAIM Control Optim. Calc. Var., 14 (2008), 864-878.doi: 10.1051/cocv:2008012.

    [7]

    S. Bianchini and A. Brancolini, Estimates on path functionals over Wasserstein spaces, SIAM J. Math. Anal., 42 (2010), 1179-1217.doi: 10.1137/100782693.

    [8]

    A. Brancolini, G. Buttazzo and F. Santambrogio, Path functionals over Wasserstein spaces, J. Eur. Math. Soc., 8 (2006), 415-434.doi: 10.4171/JEMS/61.

    [9]

    A. Brancolini and S. SoliminiOn the Hölder regularity of the landscape function, accepted on Interfaces Free Bound., available at http://cvgmt.sns.it/cgi/get.cgi/papers/brasol09/.

    [10]

    L. Brasco, Curves of minimal action over metric spaces, Ann. Mat. Pura Appl., 189 (2010), 95-125.doi: 10.1007/s10231-009-0102-0.

    [11]

    C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel" (French) [Probabilities and Potential], Chapitres I à IV. Édition entièrement refondue, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, 1372, Hermann, Paris, 1975.

    [12]

    E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math., 16 (1968), 1-29.doi: 10.1137/0116001.

    [13]

    S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28 (2007), 85-120.doi: 10.1007/s00526-006-0032-2.

    [14]

    F. Maddalena, J.-M. Morel and S. Solimini, A variational model of irrigation patterns, Interfaces Free Bound., 5 (2003), 391-415.doi: 10.4171/IFB/85.

    [15]

    F. Santambrogio, Optimal channel networks, landscape function and branched transport, Interfaces Free Bound., 9 (2007), 149-169.

    [16]

    C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.

    [17]

    Q. Xia, Optimal paths related to transport problems, Commun. Contemp. Math., 5 (2003), 251-279.doi: 10.1142/S021919970300094X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return