Citation: |
[1] |
C. Anantharaman-Delaroche and J. Renault, "Amenable groupoids," Monographie de L'Enseignement Mathematique No 36, Geneve, 2000. |
[2] |
M. Buneci, Groupoid C*-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98. |
[3] |
M. Buneci, A category of singly generated dynamical systems, in "International Conference on Dynamical Systems" (2007), International Academic Press, 122-129. |
[4] |
M. Buneci, Groupoid categories, in "Perspectives in Operators Algebras and Mathematical Physics," 27-40, Theta Ser. Adv. Math., 8, Theta, Bucharest, 2008. |
[5] |
M. Buneci and P. Stachura, Morphisms of locally compact groupoids endowed with Haar systems, arXiv:math.OA/0511613. |
[6] |
R. Exel and J. Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic Theory Dynam. Systems, 27 (2007), 1737-1771.doi: doi:10.1017/S0143385707000193. |
[7] |
P. Muhly, J. Reanult and D. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory, 17 (1987), 3-22. |
[8] |
J. Renault, "A Groupoid Approach to C*- algebras," Lecture Notes in Math. Springer-Verlag, 793, 1980. |
[9] |
S. L. Woronowicz, Pseudospaces, pseudogroups and Pontrjagin duality, in "Proc. of the International Conference on Math. Phys.," Lausanne 1979, Lecture Notes in Math., 116. |
[10] |
S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys., 134 (1990), 347-370.doi: doi:10.1007/BF02097706. |