\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Morphisms of discrete dynamical systems

Abstract Related Papers Cited by
  • The purpose of this paper is to introduce a category whose objects are discrete dynamical systems $( X,P,H,\theta ) $ in the sense of [6] and whose arrows will be defined starting from the notion of groupoid morphism given in [10]. We shall also construct a contravariant functor $( X,P,H,\theta ) \rightarrow $C* $( X,P,H,\theta ) $ from the subcategory of discrete dynamical systems for which $PP^{-1}$ is amenable to the category of C* -algebras, where C* $( X,P,H,\theta ) $ is the C* -algebra associated to the groupoid $G( X,P,H,\theta)$.
    Mathematics Subject Classification: Primary: 22A22, 43A22; Secondary: 46M15, 46L99, 37B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Anantharaman-Delaroche and J. Renault, "Amenable groupoids," Monographie de L'Enseignement Mathematique No 36, Geneve, 2000.

    [2]

    M. Buneci, Groupoid C*-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98.

    [3]

    M. Buneci, A category of singly generated dynamical systems, in "International Conference on Dynamical Systems" (2007), International Academic Press, 122-129.

    [4]

    M. Buneci, Groupoid categories, in "Perspectives in Operators Algebras and Mathematical Physics," 27-40, Theta Ser. Adv. Math., 8, Theta, Bucharest, 2008.

    [5]

    M. Buneci and P. StachuraMorphisms of locally compact groupoids endowed with Haar systems, arXiv:math.OA/0511613.

    [6]

    R. Exel and J. Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic Theory Dynam. Systems, 27 (2007), 1737-1771.doi: doi:10.1017/S0143385707000193.

    [7]

    P. Muhly, J. Reanult and D. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory, 17 (1987), 3-22.

    [8]

    J. Renault, "A Groupoid Approach to C*- algebras," Lecture Notes in Math. Springer-Verlag, 793, 1980.

    [9]

    S. L. Woronowicz, Pseudospaces, pseudogroups and Pontrjagin duality, in "Proc. of the International Conference on Math. Phys.," Lausanne 1979, Lecture Notes in Math., 116.

    [10]

    S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys., 134 (1990), 347-370.doi: doi:10.1007/BF02097706.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return