-
Previous Article
Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment
- DCDS Home
- This Issue
-
Next Article
On a generalized Poincaré-Hopf formula in infinite dimensions
Renormalization and $\alpha$-limit set for expanding Lorenz maps
1. | Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China |
References:
[1] |
V. S. Afraimovich, V. V. Bykov and L. P. Shil'nikov., On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR, 234 (1977), 336-339. |
[2] |
L. Alsedà and A. Falcò, On the topological dynamics and phase-locking renormalization of Lorenz-like maps, Ann. Inst. Fourier, Grenoble, 53 (2003), 859-883. |
[3] |
L. Alsedà, J. Llibre, M. Misiurewicz and C. Tresser, Periods and entropy for Lorenz-like maps, Ann. Inst. Fourier, Grenoble, 39 (1989), 929-952. |
[4] |
K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics," London Mathematical Society Student Texts, 62, Cambridge University Press, Cambridge, 2004. |
[5] |
Y. Choi, Attractors from one dimensional Lorenz-like maps, Discrete Contin. Dyn. Syst., 11 (2004), 715-730.
doi: 10.3934/dcds.2004.11.715. |
[6] |
H. F. Cui and Y. M. Ding, The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.
doi: 10.1016/j.topol.2009.04.054. |
[7] |
H. F. Cui and Y. M. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps, preprint, arXiv:0906.3131. |
[8] |
Y. M. Ding and W. T. Fan, The asymptotic periodicity of Lorenz maps, Acta Math. Sci., 19 (1999), 114-120. |
[9] |
L. Flatto and J. C. Lagarias, The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability, Ergodic Theory Dynam. Systems, 16 (1996), 451-491.
doi: 10.1017/S0143385700008920. |
[10] |
P. Glendinning, Topological conjugation of Lorenz maps by $\beta$-transformations, Math. Proc. Camb. Phil. Soc., 107 (1990), 401-413.
doi: 10.1017/S0305004100068675. |
[11] |
P. Glendinning and T. Hall, Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9 (1996), 999-1014.
doi: 10.1088/0951-7715/9/4/010. |
[12] |
P. Glendingning and C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
doi: 10.1016/0167-2789(93)90270-B. |
[13] |
J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, IHES Publ. Math., 50 (1979), 59-72. |
[14] |
J. H. Hubbard and C. Sparrow, The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math., 43 (1990), 431-443.
doi: 10.1002/cpa.3160430402. |
[15] |
G. Keller and P. Matthias, Topological and measurable dynamics of Lorenz maps, in "Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems," Springer, Berlin, (2001), 333-361. |
[16] |
S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing, Commun. Math. Phys., 260 (2005), 393-401.
doi: 10.1007/s00220-005-1411-9. |
[17] |
S. Luzzatto and W. Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Hautes Études Sci. Publ. Math. No., 89 (1999), 179-226. |
[18] |
M. I. Malkin, Rotation intervals and the dynamics of Lorenz type mappings, Selecta Mathematica Sovietica, 10 (1991), 265-275. |
[19] |
M.Martens and W. de Melo, Universal models for Lorenz maps, Ergodic Theory Dynam. Systems, 21 (2001), 833-860.
doi: 10.1017/S0143385701001420. |
[20] |
C. A. Morales, M. J. Pacifico and B. San Martin, Expanding Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 36 (2005), 1836-1861.
doi: 10.1137/S0036141002415785. |
[21] |
C. A. Morales, M. J. Pacifico and B. San Martin, Contracting Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 38 (2006), 309-332.
doi: 10.1137/S0036141004443907. |
[22] |
M. R. Palmer, "On the Classification of Measure Preserving Transformations of Lebesgue Spaces," Ph. D. thesis, University of Warwick, 1979. |
[23] |
W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378.
doi: 10.1090/S0002-9947-1966-0197683-5. |
[24] |
W. Parry, The Lorenz attractor and a related population model, in "Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978)," Lecture Notes in Math., 729, Springer, Berlin, (1979), 169-187 |
[25] |
C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation, SIAM J. Math. Anal., 32 (2000), 119-141.
doi: 10.1137/S0036141098343598. |
[26] |
L. Silva and R. Sousa, Topological invariants and renormalization of Lorenz maps, Phys. D, 162 (2002), 233-243.
doi: 10.1016/S0167-2789(01)00369-4. |
[27] |
C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos and Strange Attractors," Applied Mathematical Sciences, 41, Springer-Verlag, 1982. |
[28] |
W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202. |
[29] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117. |
[30] |
M. Viana, What's new on Lorenz strange attractors?, Math. Intelligencer, 22 (2000), 6-19.
doi: 10.1007/BF03025276. |
[31] |
R. F. Williams, The structure of Lorenz attractors, IHES Publ. Math., 50 (1979), 73-99. |
show all references
References:
[1] |
V. S. Afraimovich, V. V. Bykov and L. P. Shil'nikov., On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR, 234 (1977), 336-339. |
[2] |
L. Alsedà and A. Falcò, On the topological dynamics and phase-locking renormalization of Lorenz-like maps, Ann. Inst. Fourier, Grenoble, 53 (2003), 859-883. |
[3] |
L. Alsedà, J. Llibre, M. Misiurewicz and C. Tresser, Periods and entropy for Lorenz-like maps, Ann. Inst. Fourier, Grenoble, 39 (1989), 929-952. |
[4] |
K. M. Brucks and H. Bruin, "Topics From One-Dimensional Dynamics," London Mathematical Society Student Texts, 62, Cambridge University Press, Cambridge, 2004. |
[5] |
Y. Choi, Attractors from one dimensional Lorenz-like maps, Discrete Contin. Dyn. Syst., 11 (2004), 715-730.
doi: 10.3934/dcds.2004.11.715. |
[6] |
H. F. Cui and Y. M. Ding, The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.
doi: 10.1016/j.topol.2009.04.054. |
[7] |
H. F. Cui and Y. M. Ding, Renormalization and conjugacy of piecewise linear Lorenz maps, preprint, arXiv:0906.3131. |
[8] |
Y. M. Ding and W. T. Fan, The asymptotic periodicity of Lorenz maps, Acta Math. Sci., 19 (1999), 114-120. |
[9] |
L. Flatto and J. C. Lagarias, The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability, Ergodic Theory Dynam. Systems, 16 (1996), 451-491.
doi: 10.1017/S0143385700008920. |
[10] |
P. Glendinning, Topological conjugation of Lorenz maps by $\beta$-transformations, Math. Proc. Camb. Phil. Soc., 107 (1990), 401-413.
doi: 10.1017/S0305004100068675. |
[11] |
P. Glendinning and T. Hall, Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9 (1996), 999-1014.
doi: 10.1088/0951-7715/9/4/010. |
[12] |
P. Glendingning and C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
doi: 10.1016/0167-2789(93)90270-B. |
[13] |
J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, IHES Publ. Math., 50 (1979), 59-72. |
[14] |
J. H. Hubbard and C. Sparrow, The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math., 43 (1990), 431-443.
doi: 10.1002/cpa.3160430402. |
[15] |
G. Keller and P. Matthias, Topological and measurable dynamics of Lorenz maps, in "Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems," Springer, Berlin, (2001), 333-361. |
[16] |
S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing, Commun. Math. Phys., 260 (2005), 393-401.
doi: 10.1007/s00220-005-1411-9. |
[17] |
S. Luzzatto and W. Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Hautes Études Sci. Publ. Math. No., 89 (1999), 179-226. |
[18] |
M. I. Malkin, Rotation intervals and the dynamics of Lorenz type mappings, Selecta Mathematica Sovietica, 10 (1991), 265-275. |
[19] |
M.Martens and W. de Melo, Universal models for Lorenz maps, Ergodic Theory Dynam. Systems, 21 (2001), 833-860.
doi: 10.1017/S0143385701001420. |
[20] |
C. A. Morales, M. J. Pacifico and B. San Martin, Expanding Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 36 (2005), 1836-1861.
doi: 10.1137/S0036141002415785. |
[21] |
C. A. Morales, M. J. Pacifico and B. San Martin, Contracting Lorenz attractors through resonant double homoclinic loops, SIAM J. Math. Anal., 38 (2006), 309-332.
doi: 10.1137/S0036141004443907. |
[22] |
M. R. Palmer, "On the Classification of Measure Preserving Transformations of Lebesgue Spaces," Ph. D. thesis, University of Warwick, 1979. |
[23] |
W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378.
doi: 10.1090/S0002-9947-1966-0197683-5. |
[24] |
W. Parry, The Lorenz attractor and a related population model, in "Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978)," Lecture Notes in Math., 729, Springer, Berlin, (1979), 169-187 |
[25] |
C. Robinson, Nonsymmetric Lorenz attractors from a homoclinic bifurcation, SIAM J. Math. Anal., 32 (2000), 119-141.
doi: 10.1137/S0036141098343598. |
[26] |
L. Silva and R. Sousa, Topological invariants and renormalization of Lorenz maps, Phys. D, 162 (2002), 233-243.
doi: 10.1016/S0167-2789(01)00369-4. |
[27] |
C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos and Strange Attractors," Applied Mathematical Sciences, 41, Springer-Verlag, 1982. |
[28] |
W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202. |
[29] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117. |
[30] |
M. Viana, What's new on Lorenz strange attractors?, Math. Intelligencer, 22 (2000), 6-19.
doi: 10.1007/BF03025276. |
[31] |
R. F. Williams, The structure of Lorenz attractors, IHES Publ. Math., 50 (1979), 73-99. |
[1] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[2] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[3] |
Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159 |
[4] |
Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477 |
[5] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[6] |
Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567 |
[7] |
Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 |
[8] |
Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487 |
[9] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[10] |
Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983 |
[11] |
Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141 |
[12] |
Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022043 |
[13] |
Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105 |
[14] |
Fuchen Zhang, Xiaofeng Liao, Guangyun Zhang, Chunlai Mu, Min Xiao, Ping Zhou. Dynamical behaviors of a generalized Lorenz family. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3707-3720. doi: 10.3934/dcdsb.2017184 |
[15] |
John Kerin, Hans Engler. On the Lorenz '96 model and some generalizations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 769-797. doi: 10.3934/dcdsb.2021064 |
[16] |
João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641 |
[17] |
Paolo Secchi. An alpha model for compressible fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351 |
[18] |
Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349 |
[19] |
Carlangelo Liverani. A footnote on expanding maps. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741 |
[20] |
M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]