\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotics for a generalized Cahn-Hilliard equation with forcing terms

Abstract Related Papers Cited by
  • Motivated by the physical theory of Critical Dynamics the Cahn-Hilliard equation on a bounded space domain is considered and forcing terms of general type are introduced. For such a rescaled equation the limiting inter-face problem is studied and the following are derived: (i) asymptotic results indicating that the forcing terms may slow down the equilibrium locally or globally, (ii) the sharp interface limit problem in the multidimensional case demonstrating a local influence in phase transitions of terms that stem from the chemical potential, while free energy independent terms act on the rest of the domain, (iii) a limiting non-homogeneous linear diffusion equation for the one-dimensional problem in the case of deterministic forcing term that follows the white noise scaling.
    Mathematics Subject Classification: Primary: 35K55, 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rat. Mech. Anal., 128 (1994), 165-205.doi: 10.1007/BF00375025.

    [2]

    N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics, Journ. of Differential Equations, 205 (2004), 1-49.

    [3]

    T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of liesengang patterns: A spinodal decomposition scenarion, Phys. Rev. Lett., 83 (1999), 2880-2883.doi: 10.1103/PhysRevLett.83.2880.

    [4]

    G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model, Calc. Var., 26 (2006), 429-445.doi: 10.1007/s00526-006-0012-6.

    [5]

    P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part I, Journ. of Differential Equations, 111 (1994), 421-457.

    [6]

    P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part II, Journ. of Differential Equations, 117 (1995), 165-216.

    [7]

    D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models, in "Mathematical Methods and Models in Phase Transitions" (ed. A. Miranville), Nova Science Publishers, (2005), 1-41.

    [8]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.

    [9]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system II. Thermodynamic basis, J. Chem. Phys., 30 (1959), 1121-1124.doi: 10.1063/1.1730145.

    [10]

    G. Cagninalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48 (1988), 506-518.doi: 10.1137/0148029.

    [11]

    H. Cook, Brownian motion in spinodal decomposition, Acta Metallurgica, 18 (1970), 297-306.doi: 10.1016/0001-6160(70)90144-6.

    [12]

    G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.

    [13]

    G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26 (1996), 241-263.doi: 10.1016/0362-546X(94)00277-O.

    [14]

    A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection, Ann. Probab., 35 (2007), 1706-1739.doi: 10.1214/009117906000000773.

    [15]

    Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Num. Anal., 40 (2002), 1421-1445.doi: 10.1137/S0036142901387956.

    [16]

    C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357.doi: 10.1007/BF00251803.

    [17]

    N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation, Nonlinear Anal., 16 (1991), 1169-1200.doi: 10.1016/0362-546X(91)90204-E.

    [18]

    X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of solutions of Mullins-Sekerka problem, Comm. Partial Differential Equations, 21 (1996), 1705-1727.

    [19]

    P. C. Fife, Models for phase separation and their mathematics, El. Journ. Diff. E., 48 (2000), 1-26.

    [20]

    T. Funaki, The scaling limit for a Stochastic PDE and the separation of phases, Probab. Theory Relat. Fields., 102 (1995), 221-288.doi: 10.1007/BF01213390.

    [21]

    T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces, Acta Math. Sinica, English Series, 15 (1999), 407-438.doi: 10.1007/BF02650735.

    [22]

    T. Funaki, Singular limit for reaction-diffusion equation with self-similar Gaussian noise, in Proceedings of Taniguchi symposium "New Trends in Stocastic Analysis" (eds. Elworthy, Kusuoka and Shigekawa), World Sci., (2000), 132-152.

    [23]

    M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.doi: 10.1016/0167-2789(95)00173-5.

    [24]

    M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates, J. Phys. Chem., 100 (1996), 19089-19101.doi: 10.1021/jp961668w.

    [25]

    P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, J. Rev. Mod. Phys., 49 (1977), 435-479.doi: 10.1103/RevModPhys.49.435.

    [26]

    G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces," Institute of Mathematical Statistics, Lecture Notes-Monograph Series 26, Hayward, California, 1995.

    [27]

    G. Karali, Phase boundaries motion preserving the volume of each connected component, Asymptotic Analysis, 49 (2006), 17-37.

    [28]

    G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438.

    [29]

    M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev. Letters, 84 (2000), 1511-1514.doi: 10.1103/PhysRevLett.84.1511.

    [30]

    K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field, Mod. Phys. Letters B, 2 (1988), 765-771.doi: 10.1142/S0217984988000461.

    [31]

    M. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem, Interfaces Free Bound, 9 (2007), 1-30.doi: 10.4171/IFB/154.

    [32]

    G. Kossioris and G. ZourarisFully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise, ESAIM: Mathematical Modelling and Numerical Analysis, in press.

    [33]

    L. D. Landau and E. M. Lifshitz, "Statistical Physics Part 1," Course of Theoretical Physics, 5, Pergamon, 3rd edition, 1994.

    [34]

    J. S. Langer, Theory of spinodal decomposition in alloys, Ann. of Phys., 65 (1971), 53-86.doi: 10.1016/0003-4916(71)90162-X.

    [35]

    Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Comm. Math. Sci., 1 (2003), 361-375.

    [36]

    B. Øksendal, "Stochastic Differential Equations," Springer, New York, 2003.

    [37]

    R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation, Proc. R. Soc. Lond. A, 422 (1989), 261-278.doi: 10.1098/rspa.1989.0027.

    [38]

    J. Printems, On the discretization in time of parabolic stochastic partial differential equations, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055-1078.doi: 10.1051/m2an:2001148.

    [39]

    T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition, Phys. Rev. B, 37 (1988), 9638-9649.doi: 10.1103/PhysRevB.37.9638.

    [40]

    Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT Numerical Mathematics, 44 (2004), 829-847.doi: 10.1007/s10543-004-3755-5.

    [41]

    Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363-1384.doi: 10.1137/040605278.

    [42]

    J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., 984 (1986), 265-439.doi: 10.1007/BFb0074920.

    [43]

    Quan-Fang Wang and Shin-ichi Nakagiri, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems, Mathematical Models in Functional Equations, (Kyoto, 1999), Sūrikaisekikenkyūusho Kōkyūroku 1128 (2000), 172-180.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return