-
Previous Article
On the location of a peak point of a least energy solution for Hénon equation
- DCDS Home
- This Issue
-
Next Article
Dispersive estimates using scattering theory for matrix Hamiltonian equations
Asymptotics for a generalized Cahn-Hilliard equation with forcing terms
1. | Department of Applied Mathematics, University of Crete, 714 09 Heraklion, Greece, Greece |
2. | Department of Mathematics, University of Crete, GR-714 09 Heraklion, Crete, Greece |
References:
[1] |
N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.
doi: 10.1007/BF00375025. |
[2] |
N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics,, Journ. of Differential Equations, 205 (2004), 1.
|
[3] |
T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.
doi: 10.1103/PhysRevLett.83.2880. |
[4] |
G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.
doi: 10.1007/s00526-006-0012-6. |
[5] |
P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part I,, Journ. of Differential Equations, 111 (1994), 421.
|
[6] |
P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part II,, Journ. of Differential Equations, 117 (1995), 165.
|
[7] |
D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, in, (2005), 1.
|
[8] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.
doi: 10.1063/1.1744102. |
[9] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system II. Thermodynamic basis,, J. Chem. Phys., 30 (1959), 1121.
doi: 10.1063/1.1730145. |
[10] |
G. Cagninalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries,, SIAM J. Appl. Math., 48 (1988), 506.
doi: 10.1137/0148029. |
[11] |
H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.
doi: 10.1016/0001-6160(70)90144-6. |
[12] |
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).
doi: 10.1017/CBO9780511666223. |
[13] |
G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlinear Anal., 26 (1996), 241.
doi: 10.1016/0362-546X(94)00277-O. |
[14] |
A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.
doi: 10.1214/009117906000000773. |
[15] |
Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises,, SIAM J. Num. Anal., 40 (2002), 1421.
doi: 10.1137/S0036142901387956. |
[16] |
C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rat. Mech. Anal., 96 (1986), 339.
doi: 10.1007/BF00251803. |
[17] |
N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.
doi: 10.1016/0362-546X(91)90204-E. |
[18] |
X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of solutions of Mullins-Sekerka problem,, Comm. Partial Differential Equations, 21 (1996), 1705.
|
[19] |
P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.
|
[20] |
T. Funaki, The scaling limit for a Stochastic PDE and the separation of phases,, Probab. Theory Relat. Fields., 102 (1995), 221.
doi: 10.1007/BF01213390. |
[21] |
T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces,, Acta Math. Sinica, 15 (1999), 407.
doi: 10.1007/BF02650735. |
[22] |
T. Funaki, Singular limit for reaction-diffusion equation with self-similar Gaussian noise,, in Proceedings of Taniguchi symposium, (2000), 132.
|
[23] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[24] |
M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.
doi: 10.1021/jp961668w. |
[25] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, J. Rev. Mod. Phys., 49 (1977), 435.
doi: 10.1103/RevModPhys.49.435. |
[26] |
G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,", Institute of Mathematical Statistics, 26 (1995).
|
[27] |
G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.
|
[28] |
G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.
|
[29] |
M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.
doi: 10.1103/PhysRevLett.84.1511. |
[30] |
K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.
doi: 10.1142/S0217984988000461. |
[31] |
M. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem,, Interfaces Free Bound, 9 (2007), 1.
doi: 10.4171/IFB/154. |
[32] |
G. Kossioris and G. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise,, ESAIM: Mathematical Modelling and Numerical Analysis, (). Google Scholar |
[33] |
L. D. Landau and E. M. Lifshitz, "Statistical Physics Part 1,", Course of Theoretical Physics, 5 (1994).
|
[34] |
J. S. Langer, Theory of spinodal decomposition in alloys,, Ann. of Phys., 65 (1971), 53.
doi: 10.1016/0003-4916(71)90162-X. |
[35] |
Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise,, Comm. Math. Sci., 1 (2003), 361.
|
[36] |
B. Øksendal, "Stochastic Differential Equations,", Springer, (2003). Google Scholar |
[37] |
R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.
doi: 10.1098/rspa.1989.0027. |
[38] |
J. Printems, On the discretization in time of parabolic stochastic partial differential equations,, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055.
doi: 10.1051/m2an:2001148. |
[39] |
T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition,, Phys. Rev. B, 37 (1988), 9638.
doi: 10.1103/PhysRevB.37.9638. |
[40] |
Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT Numerical Mathematics, 44 (2004), 829.
doi: 10.1007/s10543-004-3755-5. |
[41] |
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations,, SIAM J. Numer. Anal., 43 (2005), 1363.
doi: 10.1137/040605278. |
[42] |
J. B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 984 (1986), 265.
doi: 10.1007/BFb0074920. |
[43] |
Quan-Fang Wang and Shin-ichi Nakagiri, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems,, Mathematical Models in Functional Equations, 1128 (2000), 172.
|
show all references
References:
[1] |
N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.
doi: 10.1007/BF00375025. |
[2] |
N. D. Alikakos, G. Fusco and G. Karali, Ostwald ripening in two dimensions- The rigorous derivation of the equations from Mullins-Sekerka dynamics,, Journ. of Differential Equations, 205 (2004), 1.
|
[3] |
T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.
doi: 10.1103/PhysRevLett.83.2880. |
[4] |
G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.
doi: 10.1007/s00526-006-0012-6. |
[5] |
P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part I,, Journ. of Differential Equations, 111 (1994), 421.
|
[6] |
P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard Equation, Part II,, Journ. of Differential Equations, 117 (1995), 165.
|
[7] |
D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, in, (2005), 1.
|
[8] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.
doi: 10.1063/1.1744102. |
[9] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system II. Thermodynamic basis,, J. Chem. Phys., 30 (1959), 1121.
doi: 10.1063/1.1730145. |
[10] |
G. Cagninalp and P. C. Fife, Dynamics of layered interfaces arising from phase boundaries,, SIAM J. Appl. Math., 48 (1988), 506.
doi: 10.1137/0148029. |
[11] |
H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.
doi: 10.1016/0001-6160(70)90144-6. |
[12] |
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).
doi: 10.1017/CBO9780511666223. |
[13] |
G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlinear Anal., 26 (1996), 241.
doi: 10.1016/0362-546X(94)00277-O. |
[14] |
A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.
doi: 10.1214/009117906000000773. |
[15] |
Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises,, SIAM J. Num. Anal., 40 (2002), 1421.
doi: 10.1137/S0036142901387956. |
[16] |
C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rat. Mech. Anal., 96 (1986), 339.
doi: 10.1007/BF00251803. |
[17] |
N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.
doi: 10.1016/0362-546X(91)90204-E. |
[18] |
X. Chen, X. Hong and F. Yi, Existence, uniqueness and regularity of solutions of Mullins-Sekerka problem,, Comm. Partial Differential Equations, 21 (1996), 1705.
|
[19] |
P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.
|
[20] |
T. Funaki, The scaling limit for a Stochastic PDE and the separation of phases,, Probab. Theory Relat. Fields., 102 (1995), 221.
doi: 10.1007/BF01213390. |
[21] |
T. Funaki, Singular limit for stochastic reaction-diffusion equation and generation of random interfaces,, Acta Math. Sinica, 15 (1999), 407.
doi: 10.1007/BF02650735. |
[22] |
T. Funaki, Singular limit for reaction-diffusion equation with self-similar Gaussian noise,, in Proceedings of Taniguchi symposium, (2000), 132.
|
[23] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[24] |
M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.
doi: 10.1021/jp961668w. |
[25] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, J. Rev. Mod. Phys., 49 (1977), 435.
doi: 10.1103/RevModPhys.49.435. |
[26] |
G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,", Institute of Mathematical Statistics, 26 (1995).
|
[27] |
G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.
|
[28] |
G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.
|
[29] |
M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.
doi: 10.1103/PhysRevLett.84.1511. |
[30] |
K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.
doi: 10.1142/S0217984988000461. |
[31] |
M. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem,, Interfaces Free Bound, 9 (2007), 1.
doi: 10.4171/IFB/154. |
[32] |
G. Kossioris and G. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise,, ESAIM: Mathematical Modelling and Numerical Analysis, (). Google Scholar |
[33] |
L. D. Landau and E. M. Lifshitz, "Statistical Physics Part 1,", Course of Theoretical Physics, 5 (1994).
|
[34] |
J. S. Langer, Theory of spinodal decomposition in alloys,, Ann. of Phys., 65 (1971), 53.
doi: 10.1016/0003-4916(71)90162-X. |
[35] |
Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise,, Comm. Math. Sci., 1 (2003), 361.
|
[36] |
B. Øksendal, "Stochastic Differential Equations,", Springer, (2003). Google Scholar |
[37] |
R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.
doi: 10.1098/rspa.1989.0027. |
[38] |
J. Printems, On the discretization in time of parabolic stochastic partial differential equations,, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055.
doi: 10.1051/m2an:2001148. |
[39] |
T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition,, Phys. Rev. B, 37 (1988), 9638.
doi: 10.1103/PhysRevB.37.9638. |
[40] |
Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,, BIT Numerical Mathematics, 44 (2004), 829.
doi: 10.1007/s10543-004-3755-5. |
[41] |
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations,, SIAM J. Numer. Anal., 43 (2005), 1363.
doi: 10.1137/040605278. |
[42] |
J. B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 984 (1986), 265.
doi: 10.1007/BFb0074920. |
[43] |
Quan-Fang Wang and Shin-ichi Nakagiri, Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems,, Mathematical Models in Functional Equations, 1128 (2000), 172.
|
[1] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[2] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[3] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[4] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[5] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[6] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[7] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[8] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[9] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[10] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[11] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[12] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[16] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]