-
Previous Article
Counterexamples in non-positive curvature
- DCDS Home
- This Issue
-
Next Article
On the location of a peak point of a least energy solution for Hénon equation
Radial symmetry of solutions for some integral systems of Wolff type
1. | Department of Mathematics, Yeshiva University, New York, NY 10033 |
2. | Department of Applied Mathematics, University of Colorado at Boulder |
$\u(x) = W_{\beta, \gamma}(v^q)(x)$, $\x \in R^n$;
$\v(x) = W_{\beta, \gamma} (u^p)(x)$, $\x \in R^n$;
(1)
where$ \W_{\beta,\gamma} (f)(x) = \int_0^{\infty}$ $[ \frac{\int_{B_t(x)} f(y) dy}{t^{n-\beta\gamma}} ]^{\frac{1}{\gamma-1}} \frac{d t}{t}.$
After modifying and refining our techniques on the method of moving planes in integral forms, we obtain radial symmetry and monotonicity for the positive solutions to systems (1).
This system includes many known systems as special cases, in particular, when $\beta = \frac{\alpha}{2}$ and $\gamma = 2$, system (1) reduces to
$\u(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} v(y)^q dy$, $\ x \in R^n$,
$v(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} u(y)^p dy$, $\ x \in R^n$.
(2)
The solutions $(u,v)$ of (2) are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality. We can show that (2) is equivalent to a system of semi-linear elliptic PDEs
$(-\Delta)^{\alpha/2} u = v^q$, in $R^n$,
$(-\Delta)^{\alpha/2} v = u^p$, in $R^n$
(3)
which comprises the well-known Lane-Emden system and Yamabe equation.References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, C. P. A. M., XLII (1989), 271.
|
[2] |
W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., 2005 (): 164.
|
[3] |
W. Chen and C. Li, Regularity of Solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.
|
[4] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.
|
[5] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.
doi: 10.1016/S0252-9602(09)60079-5. |
[6] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
|
[7] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[8] |
W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, , submitted to Trans. AMS, (2011). Google Scholar |
[9] |
W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations,", AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).
|
[10] |
C. Ma, W. Chen, and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances of Math, 3 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[11] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.
|
[12] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.
|
[13] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs, 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[14] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n,$, Advances in Mathematics, 7a (1981).
|
[15] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, (2007). Google Scholar |
[16] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.
doi: 10.1016/j.anihpc.2007.03.006. |
[17] |
G. Hardy and J. Littelwood, Some properties of fractional integrals I,, Math. Zeitschr., 27 (1928), 565.
doi: 10.1007/BF01171116. |
[18] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.
|
[19] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[20] |
C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.
|
[21] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math, 118 (1983), 349.
doi: 10.2307/2007032. |
[22] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Analysis: Theory, 71 (2009), 1796.
|
[23] |
Y. Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.
doi: 10.4171/JEMS/6. |
[24] |
C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.
doi: 10.3934/cpaa.2007.6.453. |
[25] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[26] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.
doi: 10.3934/cpaa.2009.8.1925. |
[27] |
D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.
|
[28] |
L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.
doi: 10.3934/cpaa.2006.5.855. |
[29] |
L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.
doi: 10.1016/j.jmaa.2007.12.064. |
[30] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.
doi: 10.1007/s00205-008-0208-3. |
[31] |
N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Annals of Math., 168 (2008), 859.
doi: 10.4007/annals.2008.168.859. |
[32] |
S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471. Google Scholar |
[33] |
N. Trudinger and X. Wang, Hessian measure II,, Annals of Math., 150 (1999), 579.
doi: 10.2307/121089. |
[34] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.
doi: 10.1007/s002080050258. |
show all references
References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, C. P. A. M., XLII (1989), 271.
|
[2] |
W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., 2005 (): 164.
|
[3] |
W. Chen and C. Li, Regularity of Solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.
|
[4] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.
|
[5] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.
doi: 10.1016/S0252-9602(09)60079-5. |
[6] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
|
[7] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[8] |
W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, , submitted to Trans. AMS, (2011). Google Scholar |
[9] |
W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations,", AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).
|
[10] |
C. Ma, W. Chen, and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances of Math, 3 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[11] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.
|
[12] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.
|
[13] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs, 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[14] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n,$, Advances in Mathematics, 7a (1981).
|
[15] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, (2007). Google Scholar |
[16] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.
doi: 10.1016/j.anihpc.2007.03.006. |
[17] |
G. Hardy and J. Littelwood, Some properties of fractional integrals I,, Math. Zeitschr., 27 (1928), 565.
doi: 10.1007/BF01171116. |
[18] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.
|
[19] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[20] |
C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.
|
[21] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math, 118 (1983), 349.
doi: 10.2307/2007032. |
[22] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Analysis: Theory, 71 (2009), 1796.
|
[23] |
Y. Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.
doi: 10.4171/JEMS/6. |
[24] |
C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.
doi: 10.3934/cpaa.2007.6.453. |
[25] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[26] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.
doi: 10.3934/cpaa.2009.8.1925. |
[27] |
D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.
|
[28] |
L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.
doi: 10.3934/cpaa.2006.5.855. |
[29] |
L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.
doi: 10.1016/j.jmaa.2007.12.064. |
[30] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.
doi: 10.1007/s00205-008-0208-3. |
[31] |
N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Annals of Math., 168 (2008), 859.
doi: 10.4007/annals.2008.168.859. |
[32] |
S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471. Google Scholar |
[33] |
N. Trudinger and X. Wang, Hessian measure II,, Annals of Math., 150 (1999), 579.
doi: 10.2307/121089. |
[34] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.
doi: 10.1007/s002080050258. |
[1] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[2] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[3] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[4] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[5] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[11] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[12] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[13] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[14] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[15] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[16] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[17] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[18] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[19] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[20] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]