\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Radial symmetry of solutions for some integral systems of Wolff type

Abstract Related Papers Cited by
  • We consider the fully nonlinear integral systems involving Wolff potentials:

    $\u(x) = W_{\beta, \gamma}(v^q)(x)$, $\x \in R^n$;
    $\v(x) = W_{\beta, \gamma} (u^p)(x)$, $\x \in R^n$;

    (1)

    where

    $ \W_{\beta,\gamma} (f)(x) = \int_0^{\infty}$ $[ \frac{\int_{B_t(x)} f(y) dy}{t^{n-\beta\gamma}} ]^{\frac{1}{\gamma-1}} \frac{d t}{t}.$

        
       After modifying and refining our techniques on the method of moving planes in integral forms, we obtain radial symmetry and monotonicity for the positive solutions to systems (1).        
       This system includes many known systems as special cases, in particular, when $\beta = \frac{\alpha}{2}$ and $\gamma = 2$, system (1) reduces to

    $\u(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} v(y)^q dy$, $\ x \in R^n$,
    $v(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} u(y)^p dy$, $\ x \in R^n$.

    (2)

    The solutions $(u,v)$ of (2) are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality. We can show that (2) is equivalent to a system of semi-linear elliptic PDEs

    $(-\Delta)^{\alpha/2} u = v^q$, in $R^n$,
    $(-\Delta)^{\alpha/2} v = u^p$, in $R^n$

    (3)

    which comprises the well-known Lane-Emden system and Yamabe equation.
    Mathematics Subject Classification: Primary: 45G15, 35J60; Secondary: 35J91.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, C. P. A. M., XLII (1989), 271-297.

    [2]

    W. Chen, C. Jin, C. Li and C. LimWeighted Hardy-Littlewood-Sobolev inequalities and system of integral equations, Disc. Cont. Dyn. Sys., 2005, suppl., 164-172.

    [3]

    W. Chen and C. Li, Regularity of Solutions for a system of integral equations, Comm. Pure and Appl. Anal., 4 (2005), 1-8.

    [4]

    W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962.

    [5]

    W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 4 (2009), 949-960.doi: 10.1016/S0252-9602(09)60079-5.

    [6]

    W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dyn. Sys., 4 (2009), 1167-1184.

    [7]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [8]

    W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, submitted to Trans. AMS, 2011.

    [9]

    W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations," AIMS Book Series on Diff. Equa. & Dyn. Sys., 4, 2010.

    [10]

    C. Ma, W. Chen, and C. Li, Regularity of solutions for an integral system of Wolff type, Advances of Math, 3(2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020.

    [11]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., LLVIII (2005), 1-14.

    [12]

    W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.

    [13]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. PDEs, 30 (2005), 59-65.doi: 10.1081/PDE-200044445.

    [14]

    B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n,$ "Mathematical Analysis and Applications," Advances in Mathematics, 7a, Academic Press, New York, 1981.

    [15]

    F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res Lett, 2007, preprint, arXiv:math/0703778.

    [16]

    F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. H. Poincare Nonl. Anal., 26 (2009), 1-21.doi: 10.1016/j.anihpc.2007.03.006.

    [17]

    G. Hardy and J. Littelwood, Some properties of fractional integrals I, Math. Zeitschr., 27 (1928), 565-606.doi: 10.1007/BF01171116.

    [18]

    C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. AMS, 134 (2006), 1661-1670.

    [19]

    T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.

    [20]

    C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.

    [21]

    E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Math, 118 (1983), 349-374.doi: 10.2307/2007032.

    [22]

    S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1796-1806.

    [23]

    Y. Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Euro. Math. Soc., 6 (2004), 153-180.doi: 10.4171/JEMS/6.

    [24]

    C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464.doi: 10.3934/cpaa.2007.6.453.

    [25]

    C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. of Appl. Anal., 40 (2008), 1049-1057.doi: 10.1137/080712301.

    [26]

    C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations, Comm. Pure Appl. Anal., 6 (2009), 1925-1932.doi: 10.3934/cpaa.2009.8.1925.

    [27]

    D. Li and R. Zhuo, An integral equation on half space, Proc. AMS, 138 (2010), 2779-2791.

    [28]

    L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855.

    [29]

    L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 2 (2008), 943-949.doi: 10.1016/j.jmaa.2007.12.064.

    [30]

    L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rat. Mech. Anal., 2 (2010), 455-467.doi: 10.1007/s00205-008-0208-3.

    [31]

    N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Annals of Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859.

    [32]

    S. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.), 4 (1938), 471-479; AMS Transl. Ser. 2, 34 (1963), 39-68.

    [33]

    N. Trudinger and X. Wang, Hessian measure II, Annals of Math., 150 (1999), 579-604.doi: 10.2307/121089.

    [34]

    J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.doi: 10.1007/s002080050258.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return