November  2011, 30(4): 1083-1093. doi: 10.3934/dcds.2011.30.1083

Radial symmetry of solutions for some integral systems of Wolff type

1. 

Department of Mathematics, Yeshiva University, New York, NY 10033

2. 

Department of Applied Mathematics, University of Colorado at Boulder

Received  March 2010 Revised  August 2010 Published  May 2011

We consider the fully nonlinear integral systems involving Wolff potentials:

$\u(x) = W_{\beta, \gamma}(v^q)(x)$, $\x \in R^n$;
$\v(x) = W_{\beta, \gamma} (u^p)(x)$, $\x \in R^n$;

(1)

where

$ \W_{\beta,\gamma} (f)(x) = \int_0^{\infty}$ $[ \frac{\int_{B_t(x)} f(y) dy}{t^{n-\beta\gamma}} ]^{\frac{1}{\gamma-1}} \frac{d t}{t}.$

    
   After modifying and refining our techniques on the method of moving planes in integral forms, we obtain radial symmetry and monotonicity for the positive solutions to systems (1).        
   This system includes many known systems as special cases, in particular, when $\beta = \frac{\alpha}{2}$ and $\gamma = 2$, system (1) reduces to

$\u(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} v(y)^q dy$, $\ x \in R^n$,
$v(x) = \int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} u(y)^p dy$, $\ x \in R^n$.

(2)

The solutions $(u,v)$ of (2) are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality. We can show that (2) is equivalent to a system of semi-linear elliptic PDEs

$(-\Delta)^{\alpha/2} u = v^q$, in $R^n$,
$(-\Delta)^{\alpha/2} v = u^p$, in $R^n$

(3)

which comprises the well-known Lane-Emden system and Yamabe equation.
Citation: Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083
References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, C. P. A. M., XLII (1989), 271.   Google Scholar

[2]

W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., 2005 (): 164.   Google Scholar

[3]

W. Chen and C. Li, Regularity of Solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.   Google Scholar

[4]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.   Google Scholar

[5]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[6]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.   Google Scholar

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[8]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, , submitted to Trans. AMS, (2011).   Google Scholar

[9]

W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations,", AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).   Google Scholar

[10]

C. Ma, W. Chen, and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances of Math, 3 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.   Google Scholar

[12]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.   Google Scholar

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[14]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n,$, Advances in Mathematics, 7a (1981).   Google Scholar

[15]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, (2007).   Google Scholar

[16]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[17]

G. Hardy and J. Littelwood, Some properties of fractional integrals I,, Math. Zeitschr., 27 (1928), 565.  doi: 10.1007/BF01171116.  Google Scholar

[18]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.   Google Scholar

[19]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[20]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math, 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[22]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Analysis: Theory, 71 (2009), 1796.   Google Scholar

[23]

Y. Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[24]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[25]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[26]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.  doi: 10.3934/cpaa.2009.8.1925.  Google Scholar

[27]

D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.   Google Scholar

[28]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[29]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[30]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[31]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Annals of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[32]

S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471.   Google Scholar

[33]

N. Trudinger and X. Wang, Hessian measure II,, Annals of Math., 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[34]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

show all references

References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, C. P. A. M., XLII (1989), 271.   Google Scholar

[2]

W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., 2005 (): 164.   Google Scholar

[3]

W. Chen and C. Li, Regularity of Solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.   Google Scholar

[4]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.   Google Scholar

[5]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[6]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.   Google Scholar

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[8]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, , submitted to Trans. AMS, (2011).   Google Scholar

[9]

W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations,", AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).   Google Scholar

[10]

C. Ma, W. Chen, and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances of Math, 3 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[11]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.   Google Scholar

[12]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.   Google Scholar

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[14]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n,$, Advances in Mathematics, 7a (1981).   Google Scholar

[15]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, (2007).   Google Scholar

[16]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar

[17]

G. Hardy and J. Littelwood, Some properties of fractional integrals I,, Math. Zeitschr., 27 (1928), 565.  doi: 10.1007/BF01171116.  Google Scholar

[18]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.   Google Scholar

[19]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[20]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math, 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[22]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonlinear Analysis: Theory, 71 (2009), 1796.   Google Scholar

[23]

Y. Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[24]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[25]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[26]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.  doi: 10.3934/cpaa.2009.8.1925.  Google Scholar

[27]

D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.   Google Scholar

[28]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[29]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[30]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[31]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Annals of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[32]

S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471.   Google Scholar

[33]

N. Trudinger and X. Wang, Hessian measure II,, Annals of Math., 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[34]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

[1]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[2]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[3]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[4]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[5]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[7]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[11]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[12]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[13]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[19]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (30)

Other articles
by authors

[Back to Top]