-
Previous Article
Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation
- DCDS Home
- This Issue
-
Next Article
Radial symmetry of solutions for some integral systems of Wolff type
Counterexamples in non-positive curvature
1. | Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29238 Brest cedex, France |
2. | LAMFA, Université Picardie Jules Verne, 33 rue St Leu 80000 Amiens, France |
References:
[1] |
D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).
|
[2] |
W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.
doi: 10.2307/1971303. |
[3] |
P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).
|
[4] |
Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.
|
[5] |
Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.
doi: 10.1007/s11856-010-0076-z. |
[6] |
P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.
doi: 10.2307/1970869. |
[7] |
P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).
|
[8] |
J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729. Google Scholar |
[9] |
G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.
|
[10] |
G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.
|
[11] |
C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).
|
[12] |
K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.
doi: 10.2307/2373591. |
show all references
References:
[1] |
D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).
|
[2] |
W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.
doi: 10.2307/1971303. |
[3] |
P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).
|
[4] |
Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.
|
[5] |
Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.
doi: 10.1007/s11856-010-0076-z. |
[6] |
P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.
doi: 10.2307/1970869. |
[7] |
P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).
|
[8] |
J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729. Google Scholar |
[9] |
G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.
|
[10] |
G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.
|
[11] |
C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).
|
[12] |
K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.
doi: 10.2307/2373591. |
[1] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[2] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[3] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[4] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[5] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[6] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[9] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[10] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[11] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[12] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[13] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[14] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[15] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[16] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[17] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[18] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[19] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[20] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]