November  2011, 30(4): 1095-1106. doi: 10.3934/dcds.2011.30.1095

Counterexamples in non-positive curvature

1. 

Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29238 Brest cedex, France

2. 

LAMFA, Université Picardie Jules Verne, 33 rue St Leu 80000 Amiens, France

Received  April 2010 Revised  August 2010 Published  May 2011

We give examples of rank one compact surfaces on which there exist recurrent geodesics that cannot be shadowed by periodic geodesics. We build rank one compact surfaces such that ergodic measures on the unit tangent bundle of the surface are not dense in the set of probability measures invariant by the geodesic flow. Finally, we give examples of complete rank one surfaces for which the non wandering set of the geodesic flow is connected, the periodic orbits are dense in that set, yet the geodesic flow is not transitive in restriction to its non wandering set.
Citation: Yves Coudène, Barbara Schapira. Counterexamples in non-positive curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1095-1106. doi: 10.3934/dcds.2011.30.1095
References:
[1]

D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[2]

W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.  doi: 10.2307/1971303.  Google Scholar

[3]

P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).   Google Scholar

[4]

Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.   Google Scholar

[5]

Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.  doi: 10.1007/s11856-010-0076-z.  Google Scholar

[6]

P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.  doi: 10.2307/1970869.  Google Scholar

[7]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).   Google Scholar

[8]

J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729.   Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.   Google Scholar

[10]

G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.   Google Scholar

[11]

C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).   Google Scholar

[12]

K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.  doi: 10.2307/2373591.  Google Scholar

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[2]

W. Ballmann, M. Brin and R. Spatzier, Structure of manifolds of nonpositive curvature. II,, Ann. of Math., 122 (1985), 205.  doi: 10.2307/1971303.  Google Scholar

[3]

P. Billingsley, Convergence of probability measures,, Wiley Series in Probability and Statistics: Probability and Statistics, (1999).   Google Scholar

[4]

Yu. D. Burago and S. Z. Shefel, The geometry of surfaces in Euclidean spaces,, Geometry, III, 48 (1992), 1.   Google Scholar

[5]

Y. Coudene and B. Schapira, Generic measures for hyperbolic flows on non-compact spaces,, Israel J. Math., 179 (2010), 157.  doi: 10.1007/s11856-010-0076-z.  Google Scholar

[6]

P. Eberlein, Geodesic flows on negatively curved manifolds I,, Ann. Math. II Ser., 95 (1972), 492.  doi: 10.2307/1970869.  Google Scholar

[7]

P. Eberlein, "Geometry of Nonpositively Curved Manifolds,", Chicago Lectures in Mathematics, (1996).   Google Scholar

[8]

J. Hadamard, Les surfaces courbures opposées et leurs lignes géodésiques,, dans Oeuvres (1898), 2 (1898), 729.   Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry,, Handbook of Dynamical Systems, 1A (2002), 453.   Google Scholar

[10]

G. Link, M. Peigné and J. C. Picaud, Sur les surfaces non-compactes de rang un,, L'enseignement Mathématique, 52 (2006), 3.   Google Scholar

[11]

C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos,, Studies in Advanced Mathematics, (1999).   Google Scholar

[12]

K. Sigmund, On the space of invariant measures for hyperbolic flows,, Amer. J. Math., 94 (1972), 31.  doi: 10.2307/2373591.  Google Scholar

[1]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[2]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[5]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[6]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[9]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[10]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[13]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[18]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[20]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]