-
Previous Article
A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature
- DCDS Home
- This Issue
-
Next Article
Counterexamples in non-positive curvature
Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation
1. | Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai |
References:
[1] |
C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws,, J. Sci. Comput., 34 (2008), 1.
doi: 10.1007/s10915-007-9155-7. |
[2] |
S. Balasubramanyam and S. V. Raghurama Rao, A grid-free upwind relaxation scheme for inviscid compressible flows,, Internat. J. Numer. Methods Fluids, 51 (2006), 159.
doi: 10.1002/fld.1099. |
[3] |
S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,", 3rd edition, (1970).
|
[4] |
G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy,, Comm. Pure Appl. Math., 47 (1994), 787.
doi: doi:10.1002/cpa.3160470602. |
[5] |
D. Donatelli and C. Lattanzio, On the diffusive stress relaxation for multidimensional viscoelasticity,, Commun. Pure Appl. Anal., 8 (2009), 645.
doi: 10.3934/cpaa.2009.8.645. |
[6] |
M. Di Francesco and D. Donatelli, Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 79.
|
[7] |
L. C. Evans, Partial differential equations,, Graduate studies in Math., 19 (1998).
|
[8] |
H. Fan and J. Härterich, Conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit,, Nonlinear Anal., 63 (2005), 1042.
doi: 10.1016/j.na.2003.10.031. |
[9] |
D. Hoff and K. Zumbrum, Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. Journal, 44 (1995), 603.
doi: 10.1512/iumj.1995.44.2003. |
[10] |
S. Jin and Z. P. Xin, The relaxation schemes for system of conservative laws in arbitrary space dimensions,, Comm. Pure Appl. Math., 48 (1995), 235.
doi: 10.1002/cpa.3160480303. |
[11] |
S. Jin and Z. P. Xin, Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, relaxation schemes,, SIAM J. Numer. Anal., 35 (1998), 2385.
doi: 10.1137/S0036142996314366. |
[12] |
B. Kwon and K. Zumbrun, Asymptotic behavior of multidimensional scalar relaxation shocks,, J. Hyperbolic Differ. Equ., 6 (2009), 663.
|
[13] |
D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Commun. Math. Phys., 257 (2005), 579.
doi: 10.1007/s00220-005-1351-4. |
[14] |
M. B. Liu and Z. X. Cheng, Conservation laws. III. Relaxation limit,, Rev. Colombiana Mat., 41 (2007), 107.
|
[15] |
T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow,, J. Differential Equations, 190 (2003), 131.
|
[16] |
T.-P. Liu, Hyperbolic conservative laws with relaxation,, Comm. Math. Phys., 108 (1987), 153.
doi: 10.1007/BF01210707. |
[17] |
T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D. |
[18] |
T.-P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension,, Comm. Math. Phys., 196 (1998), 145.
doi: 10.1007/s002200050418. |
[19] |
T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.
doi: 10.1002/cpa.20011. |
[20] |
T.-P. Liu and S.-H. Yu, Green's function and large-time behavior of solutions of Boltzmann equation, 3-D waves,, Bulletin. Inst. Math. Academia Sinica (N.S.), 1 (2006), 1.
|
[21] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).
|
[22] |
Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013.
doi: 10.3934/dcds.2008.20.1013. |
[23] |
T. Luo and Z. P. Xin, Nonlinear stability of shock fronts for a relaxation system in several space dimensions,, J. Differential Equations, 139 (1997), 365.
|
[24] |
C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks,, Indiana Univ. Math. J., 51 (2002), 773.
doi: 10.1512/iumj.2002.51.2212. |
[25] |
C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems,, SIAM J. Math. Anal., 37 (2005), 889.
doi: 10.1137/S0036141004435844. |
[26] |
C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles,, Comm. Partial Differential Equations, 34 (2009), 119.
|
[27] |
R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles,, Discrete Contin. Dyn. Syst., 10 (2004), 885.
doi: 10.3934/dcds.2004.10.885. |
[28] |
R. Kumar and M. K. Kadalbajoo, Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws,, Internat. J. Numer. Methods Fluids, 55 (2007), 483.
doi: 10.1002/fld.1479. |
[29] |
Y.-J. Peng and S. Wang, Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters,, Discrete Contin. Dyn. Syst., 23 (2009), 415.
doi: 10.3934/dcds.2009.23.415. |
[30] |
Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.
|
[31] |
W. K. Wang and H. M. Xu, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even multi-dimensions,, Acta Math. Sci. Ser. B Engl. Ed., 21 (2001), 417.
|
[32] |
W. K. Wang and T. Yang, The pointwise estimates of solutions of Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410.
|
[33] |
W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, J. Hyperbolic Differ. Equ., 2 (2005), 673.
|
[34] |
J. Xu and W.-A. Yong, Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors,, Discrete Contin. Dyn. Syst., 25 (2009), 1319.
doi: 10.3934/dcds.2009.25.1319. |
[35] |
W.-A. Yong and W. Jäger, On hyperbolic relaxation problems,, Analysis and Numerics for Conservation Laws, (2005), 495.
|
[36] |
W.-A. Yong and K. Zumbrun, Existence of relaxation shock profiles for hyperbolic conservation laws,, SIAM J. Appl. Math., 60 (2000), 1565.
doi: 10.1137/S0036139999352705. |
[37] |
Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225.
doi: 10.1007/s002050050188. |
show all references
References:
[1] |
C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws,, J. Sci. Comput., 34 (2008), 1.
doi: 10.1007/s10915-007-9155-7. |
[2] |
S. Balasubramanyam and S. V. Raghurama Rao, A grid-free upwind relaxation scheme for inviscid compressible flows,, Internat. J. Numer. Methods Fluids, 51 (2006), 159.
doi: 10.1002/fld.1099. |
[3] |
S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,", 3rd edition, (1970).
|
[4] |
G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy,, Comm. Pure Appl. Math., 47 (1994), 787.
doi: doi:10.1002/cpa.3160470602. |
[5] |
D. Donatelli and C. Lattanzio, On the diffusive stress relaxation for multidimensional viscoelasticity,, Commun. Pure Appl. Anal., 8 (2009), 645.
doi: 10.3934/cpaa.2009.8.645. |
[6] |
M. Di Francesco and D. Donatelli, Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 79.
|
[7] |
L. C. Evans, Partial differential equations,, Graduate studies in Math., 19 (1998).
|
[8] |
H. Fan and J. Härterich, Conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit,, Nonlinear Anal., 63 (2005), 1042.
doi: 10.1016/j.na.2003.10.031. |
[9] |
D. Hoff and K. Zumbrum, Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. Journal, 44 (1995), 603.
doi: 10.1512/iumj.1995.44.2003. |
[10] |
S. Jin and Z. P. Xin, The relaxation schemes for system of conservative laws in arbitrary space dimensions,, Comm. Pure Appl. Math., 48 (1995), 235.
doi: 10.1002/cpa.3160480303. |
[11] |
S. Jin and Z. P. Xin, Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, relaxation schemes,, SIAM J. Numer. Anal., 35 (1998), 2385.
doi: 10.1137/S0036142996314366. |
[12] |
B. Kwon and K. Zumbrun, Asymptotic behavior of multidimensional scalar relaxation shocks,, J. Hyperbolic Differ. Equ., 6 (2009), 663.
|
[13] |
D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Commun. Math. Phys., 257 (2005), 579.
doi: 10.1007/s00220-005-1351-4. |
[14] |
M. B. Liu and Z. X. Cheng, Conservation laws. III. Relaxation limit,, Rev. Colombiana Mat., 41 (2007), 107.
|
[15] |
T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow,, J. Differential Equations, 190 (2003), 131.
|
[16] |
T.-P. Liu, Hyperbolic conservative laws with relaxation,, Comm. Math. Phys., 108 (1987), 153.
doi: 10.1007/BF01210707. |
[17] |
T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D. |
[18] |
T.-P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension,, Comm. Math. Phys., 196 (1998), 145.
doi: 10.1007/s002200050418. |
[19] |
T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.
doi: 10.1002/cpa.20011. |
[20] |
T.-P. Liu and S.-H. Yu, Green's function and large-time behavior of solutions of Boltzmann equation, 3-D waves,, Bulletin. Inst. Math. Academia Sinica (N.S.), 1 (2006), 1.
|
[21] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).
|
[22] |
Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013.
doi: 10.3934/dcds.2008.20.1013. |
[23] |
T. Luo and Z. P. Xin, Nonlinear stability of shock fronts for a relaxation system in several space dimensions,, J. Differential Equations, 139 (1997), 365.
|
[24] |
C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks,, Indiana Univ. Math. J., 51 (2002), 773.
doi: 10.1512/iumj.2002.51.2212. |
[25] |
C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems,, SIAM J. Math. Anal., 37 (2005), 889.
doi: 10.1137/S0036141004435844. |
[26] |
C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles,, Comm. Partial Differential Equations, 34 (2009), 119.
|
[27] |
R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles,, Discrete Contin. Dyn. Syst., 10 (2004), 885.
doi: 10.3934/dcds.2004.10.885. |
[28] |
R. Kumar and M. K. Kadalbajoo, Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws,, Internat. J. Numer. Methods Fluids, 55 (2007), 483.
doi: 10.1002/fld.1479. |
[29] |
Y.-J. Peng and S. Wang, Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters,, Discrete Contin. Dyn. Syst., 23 (2009), 415.
doi: 10.3934/dcds.2009.23.415. |
[30] |
Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.
|
[31] |
W. K. Wang and H. M. Xu, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even multi-dimensions,, Acta Math. Sci. Ser. B Engl. Ed., 21 (2001), 417.
|
[32] |
W. K. Wang and T. Yang, The pointwise estimates of solutions of Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410.
|
[33] |
W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, J. Hyperbolic Differ. Equ., 2 (2005), 673.
|
[34] |
J. Xu and W.-A. Yong, Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors,, Discrete Contin. Dyn. Syst., 25 (2009), 1319.
doi: 10.3934/dcds.2009.25.1319. |
[35] |
W.-A. Yong and W. Jäger, On hyperbolic relaxation problems,, Analysis and Numerics for Conservation Laws, (2005), 495.
|
[36] |
W.-A. Yong and K. Zumbrun, Existence of relaxation shock profiles for hyperbolic conservation laws,, SIAM J. Appl. Math., 60 (2000), 1565.
doi: 10.1137/S0036139999352705. |
[37] |
Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225.
doi: 10.1007/s002050050188. |
[1] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[2] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[3] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[4] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[5] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[6] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[7] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[8] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[11] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[12] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[13] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[14] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[15] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[16] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[17] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[18] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[19] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[20] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]