November  2011, 30(4): 1107-1138. doi: 10.3934/dcds.2011.30.1107

Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai

Received  March 2010 Revised  August 2010 Published  May 2011

Our aim is to study the pointwise time-asymptotic behavior of solutions for the scalar conservation laws with relaxation in multi-dimensions. We construct the Green's function for the Cauchy problem of the relaxation system which satisfies the dissipative condition. Based on the estimate for the Green's function, we get the pointwise estimate for the solution. It is shown that the solution exhibits some weak Huygens principle where the characteristic 'cone' is the envelope of planes.
Citation: Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107
References:
[1]

C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws,, J. Sci. Comput., 34 (2008), 1.  doi: 10.1007/s10915-007-9155-7.  Google Scholar

[2]

S. Balasubramanyam and S. V. Raghurama Rao, A grid-free upwind relaxation scheme for inviscid compressible flows,, Internat. J. Numer. Methods Fluids, 51 (2006), 159.  doi: 10.1002/fld.1099.  Google Scholar

[3]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,", 3rd edition, (1970).   Google Scholar

[4]

G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy,, Comm. Pure Appl. Math., 47 (1994), 787.  doi: doi:10.1002/cpa.3160470602.  Google Scholar

[5]

D. Donatelli and C. Lattanzio, On the diffusive stress relaxation for multidimensional viscoelasticity,, Commun. Pure Appl. Anal., 8 (2009), 645.  doi: 10.3934/cpaa.2009.8.645.  Google Scholar

[6]

M. Di Francesco and D. Donatelli, Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 79.   Google Scholar

[7]

L. C. Evans, Partial differential equations,, Graduate studies in Math., 19 (1998).   Google Scholar

[8]

H. Fan and J. Härterich, Conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit,, Nonlinear Anal., 63 (2005), 1042.  doi: 10.1016/j.na.2003.10.031.  Google Scholar

[9]

D. Hoff and K. Zumbrum, Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. Journal, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[10]

S. Jin and Z. P. Xin, The relaxation schemes for system of conservative laws in arbitrary space dimensions,, Comm. Pure Appl. Math., 48 (1995), 235.  doi: 10.1002/cpa.3160480303.  Google Scholar

[11]

S. Jin and Z. P. Xin, Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, relaxation schemes,, SIAM J. Numer. Anal., 35 (1998), 2385.  doi: 10.1137/S0036142996314366.  Google Scholar

[12]

B. Kwon and K. Zumbrun, Asymptotic behavior of multidimensional scalar relaxation shocks,, J. Hyperbolic Differ. Equ., 6 (2009), 663.   Google Scholar

[13]

D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Commun. Math. Phys., 257 (2005), 579.  doi: 10.1007/s00220-005-1351-4.  Google Scholar

[14]

M. B. Liu and Z. X. Cheng, Conservation laws. III. Relaxation limit,, Rev. Colombiana Mat., 41 (2007), 107.   Google Scholar

[15]

T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow,, J. Differential Equations, 190 (2003), 131.   Google Scholar

[16]

T.-P. Liu, Hyperbolic conservative laws with relaxation,, Comm. Math. Phys., 108 (1987), 153.  doi: 10.1007/BF01210707.  Google Scholar

[17]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.  Google Scholar

[18]

T.-P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension,, Comm. Math. Phys., 196 (1998), 145.  doi: 10.1007/s002200050418.  Google Scholar

[19]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.  doi: 10.1002/cpa.20011.  Google Scholar

[20]

T.-P. Liu and S.-H. Yu, Green's function and large-time behavior of solutions of Boltzmann equation, 3-D waves,, Bulletin. Inst. Math. Academia Sinica (N.S.), 1 (2006), 1.   Google Scholar

[21]

T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).   Google Scholar

[22]

Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013.  doi: 10.3934/dcds.2008.20.1013.  Google Scholar

[23]

T. Luo and Z. P. Xin, Nonlinear stability of shock fronts for a relaxation system in several space dimensions,, J. Differential Equations, 139 (1997), 365.   Google Scholar

[24]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks,, Indiana Univ. Math. J., 51 (2002), 773.  doi: 10.1512/iumj.2002.51.2212.  Google Scholar

[25]

C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems,, SIAM J. Math. Anal., 37 (2005), 889.  doi: 10.1137/S0036141004435844.  Google Scholar

[26]

C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles,, Comm. Partial Differential Equations, 34 (2009), 119.   Google Scholar

[27]

R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles,, Discrete Contin. Dyn. Syst., 10 (2004), 885.  doi: 10.3934/dcds.2004.10.885.  Google Scholar

[28]

R. Kumar and M. K. Kadalbajoo, Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws,, Internat. J. Numer. Methods Fluids, 55 (2007), 483.  doi: 10.1002/fld.1479.  Google Scholar

[29]

Y.-J. Peng and S. Wang, Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters,, Discrete Contin. Dyn. Syst., 23 (2009), 415.  doi: 10.3934/dcds.2009.23.415.  Google Scholar

[30]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.   Google Scholar

[31]

W. K. Wang and H. M. Xu, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even multi-dimensions,, Acta Math. Sci. Ser. B Engl. Ed., 21 (2001), 417.   Google Scholar

[32]

W. K. Wang and T. Yang, The pointwise estimates of solutions of Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410.   Google Scholar

[33]

W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, J. Hyperbolic Differ. Equ., 2 (2005), 673.   Google Scholar

[34]

J. Xu and W.-A. Yong, Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors,, Discrete Contin. Dyn. Syst., 25 (2009), 1319.  doi: 10.3934/dcds.2009.25.1319.  Google Scholar

[35]

W.-A. Yong and W. Jäger, On hyperbolic relaxation problems,, Analysis and Numerics for Conservation Laws, (2005), 495.   Google Scholar

[36]

W.-A. Yong and K. Zumbrun, Existence of relaxation shock profiles for hyperbolic conservation laws,, SIAM J. Appl. Math., 60 (2000), 1565.  doi: 10.1137/S0036139999352705.  Google Scholar

[37]

Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225.  doi: 10.1007/s002050050188.  Google Scholar

show all references

References:
[1]

C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws,, J. Sci. Comput., 34 (2008), 1.  doi: 10.1007/s10915-007-9155-7.  Google Scholar

[2]

S. Balasubramanyam and S. V. Raghurama Rao, A grid-free upwind relaxation scheme for inviscid compressible flows,, Internat. J. Numer. Methods Fluids, 51 (2006), 159.  doi: 10.1002/fld.1099.  Google Scholar

[3]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,", 3rd edition, (1970).   Google Scholar

[4]

G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy,, Comm. Pure Appl. Math., 47 (1994), 787.  doi: doi:10.1002/cpa.3160470602.  Google Scholar

[5]

D. Donatelli and C. Lattanzio, On the diffusive stress relaxation for multidimensional viscoelasticity,, Commun. Pure Appl. Anal., 8 (2009), 645.  doi: 10.3934/cpaa.2009.8.645.  Google Scholar

[6]

M. Di Francesco and D. Donatelli, Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 79.   Google Scholar

[7]

L. C. Evans, Partial differential equations,, Graduate studies in Math., 19 (1998).   Google Scholar

[8]

H. Fan and J. Härterich, Conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit,, Nonlinear Anal., 63 (2005), 1042.  doi: 10.1016/j.na.2003.10.031.  Google Scholar

[9]

D. Hoff and K. Zumbrum, Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. Journal, 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[10]

S. Jin and Z. P. Xin, The relaxation schemes for system of conservative laws in arbitrary space dimensions,, Comm. Pure Appl. Math., 48 (1995), 235.  doi: 10.1002/cpa.3160480303.  Google Scholar

[11]

S. Jin and Z. P. Xin, Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, relaxation schemes,, SIAM J. Numer. Anal., 35 (1998), 2385.  doi: 10.1137/S0036142996314366.  Google Scholar

[12]

B. Kwon and K. Zumbrun, Asymptotic behavior of multidimensional scalar relaxation shocks,, J. Hyperbolic Differ. Equ., 6 (2009), 663.   Google Scholar

[13]

D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$,, Commun. Math. Phys., 257 (2005), 579.  doi: 10.1007/s00220-005-1351-4.  Google Scholar

[14]

M. B. Liu and Z. X. Cheng, Conservation laws. III. Relaxation limit,, Rev. Colombiana Mat., 41 (2007), 107.   Google Scholar

[15]

T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow,, J. Differential Equations, 190 (2003), 131.   Google Scholar

[16]

T.-P. Liu, Hyperbolic conservative laws with relaxation,, Comm. Math. Phys., 108 (1987), 153.  doi: 10.1007/BF01210707.  Google Scholar

[17]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.  Google Scholar

[18]

T.-P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension,, Comm. Math. Phys., 196 (1998), 145.  doi: 10.1007/s002200050418.  Google Scholar

[19]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation,, Comm. Pure Appl. Math., 57 (2004), 1543.  doi: 10.1002/cpa.20011.  Google Scholar

[20]

T.-P. Liu and S.-H. Yu, Green's function and large-time behavior of solutions of Boltzmann equation, 3-D waves,, Bulletin. Inst. Math. Academia Sinica (N.S.), 1 (2006), 1.   Google Scholar

[21]

T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).   Google Scholar

[22]

Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013.  doi: 10.3934/dcds.2008.20.1013.  Google Scholar

[23]

T. Luo and Z. P. Xin, Nonlinear stability of shock fronts for a relaxation system in several space dimensions,, J. Differential Equations, 139 (1997), 365.   Google Scholar

[24]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks,, Indiana Univ. Math. J., 51 (2002), 773.  doi: 10.1512/iumj.2002.51.2212.  Google Scholar

[25]

C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems,, SIAM J. Math. Anal., 37 (2005), 889.  doi: 10.1137/S0036141004435844.  Google Scholar

[26]

C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles,, Comm. Partial Differential Equations, 34 (2009), 119.   Google Scholar

[27]

R. Plaza and K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles,, Discrete Contin. Dyn. Syst., 10 (2004), 885.  doi: 10.3934/dcds.2004.10.885.  Google Scholar

[28]

R. Kumar and M. K. Kadalbajoo, Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws,, Internat. J. Numer. Methods Fluids, 55 (2007), 483.  doi: 10.1002/fld.1479.  Google Scholar

[29]

Y.-J. Peng and S. Wang, Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters,, Discrete Contin. Dyn. Syst., 23 (2009), 415.  doi: 10.3934/dcds.2009.23.415.  Google Scholar

[30]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.   Google Scholar

[31]

W. K. Wang and H. M. Xu, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even multi-dimensions,, Acta Math. Sci. Ser. B Engl. Ed., 21 (2001), 417.   Google Scholar

[32]

W. K. Wang and T. Yang, The pointwise estimates of solutions of Euler equations with damping in multi-dimensions,, J. Differential Equations, 173 (2001), 410.   Google Scholar

[33]

W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, J. Hyperbolic Differ. Equ., 2 (2005), 673.   Google Scholar

[34]

J. Xu and W.-A. Yong, Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors,, Discrete Contin. Dyn. Syst., 25 (2009), 1319.  doi: 10.3934/dcds.2009.25.1319.  Google Scholar

[35]

W.-A. Yong and W. Jäger, On hyperbolic relaxation problems,, Analysis and Numerics for Conservation Laws, (2005), 495.   Google Scholar

[36]

W.-A. Yong and K. Zumbrun, Existence of relaxation shock profiles for hyperbolic conservation laws,, SIAM J. Appl. Math., 60 (2000), 1565.  doi: 10.1137/S0036139999352705.  Google Scholar

[37]

Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225.  doi: 10.1007/s002050050188.  Google Scholar

[1]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[4]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[5]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[6]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[7]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[16]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[17]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[18]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[19]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]