Citation: |
[1] |
M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math., 118 (1983), 187-214.doi: 10.2307/2006959. |
[2] |
N. Bournaveas, Low regularity solutions of the Dirac-Klein-Gordon equations in two space dimensions, Comm. Partial Differential Equations, 26 (2001), 1345-1366. |
[3] |
H. Brezis and J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math., 37 (1984), 149-187.doi: 10.1002/cpa.3160370202. |
[4] |
L. A. Caffarelli and Y. Yang, Vortex condensation in Chern-Simons-Higgs model: An existence theorem, Comm. Math. Phys., 168 (1995), 321-336.doi: 10.1007/BF02101552. |
[5] |
D. Chae and K. Choe, Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory, Nonlinearity, 15 (2002), 747-758.doi: 10.1088/0951-7715/15/3/314. |
[6] |
D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), 119-142.doi: 10.1007/s002200000302. |
[7] |
D. M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Comm. Math. Phys., 83 (1982), 171-191.doi: 10.1007/BF01976040. |
[8] |
D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. École Norm. Sup., 33 (2000), 211-274. |
[9] |
J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and Scalar fields in the temporal gauge, Comm. Math. Phys., 82 (1981), 1-28.doi: 10.1007/BF01206943. |
[10] |
J. Han and N. Kim, Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains, J. Funct. Anal., 221 (2005), 167-204.doi: 10.1016/j.jfa.2004.09.012. |
[11] |
J. Hong, P. Kim and P. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230-2233.doi: 10.1103/PhysRevLett.64.2230. |
[12] |
H. Huh, Low regularity solutions of the Chern-Simons-Higgs equations, Nonlinearity, 18 (2005), 1-9.doi: 10.1088/0951-7715/18/6/009. |
[13] |
H. Huh, Local and global solutions of the Chern-Simons-Higgs system, J. Funct. Anal., 242 (2007), 526-549.doi: 10.1016/j.jfa.2006.09.009. |
[14] |
R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237.doi: 10.1103/PhysRevLett.64.2234. |
[15] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.doi: 10.1215/S0012-7094-94-07402-4. |
[16] |
S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295.doi: 10.1142/S0219199702000634. |
[17] |
S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in $\mathbbR$${4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116.doi: 10.1090/S0894-0347-99-00282-9. |
[18] |
S. Lee and A. Vargas, Sharp null form estimates for the wave equation, Amer. J. Math., 130 (2008), 1279-1326.doi: 10.1353/ajm.0.0024. |
[19] |
H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.doi: 10.1006/jfan.1995.1075. |
[20] |
V. Moncrief, Global existence of Maxwell-Klein-Gordon fields in $(2+1)$ dimensional spacetimes, J. Math. Phys., 21 (1980), 2291-2296.doi: 10.1063/1.524669. |
[21] |
M. Nolasco, Non-topological N-vortex condensates for the self-dual Chern-Simons theory, Comm. Pure Appl. Math., 56 (2003), 1752-1780.doi: 10.1002/cpa.10109. |
[22] |
S. Selberg, "Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations," Ph.D. thesis, Princeton University, 1999. |
[23] |
S. Selberg, On an estimate for the wave equation and applications to nonlinear problems, Differential Integral Equations, 15 (2002), 213-236. |
[24] |
S. Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in $1+4$ dimensions, Comm. Partial Differential Equations, 27 (2002), 1183-1227. |
[25] |
J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 75-97. |
[26] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, 30, Princeton University Press, 1970. |
[27] |
T. Tao, Multilinear weighted convolution of $L$2 functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035. |
[28] |
G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796.doi: 10.1063/1.531601. |
[29] |
D. Tataru, On the $X^s_\theta$ spaces and unique continuation for semilinear hyperbolic equations, Comm. Partial Differential Equations, 21 (1996), 841-887. |
[30] |
R. Wang, The existence of Chern-Simons vortices, Comm. Math. Phys., 137 (1991), 587-597.doi: 10.1007/BF02100279. |
[31] |
H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., 26 (1969), 318-344.doi: 10.1016/0022-247X(69)90156-5. |