
Previous Article
Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
 DCDS Home
 This Issue

Next Article
The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms
Optimal regularity and stability analysis in the $\alpha$Norm for a class of partial functional differential equations with infinite delay
1.  Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P.2390 Marrakech, Morocco 
2.  African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg 7945, South Africa 
References:
[1] 
M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 71 (2009), 17091727. doi: 10.1016/j.na.2009.01.008. Google Scholar 
[2] 
R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$norm for some partial functinal differential equations with infinite delay, Differential and Integral Equations, 19 (2006), 545572. Google Scholar 
[3] 
O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis," 110, SpringerVerlag, New York, 1995. Google Scholar 
[4] 
K. J. Engel and R. Nagel, "OneParameter Semigroups of Linear Evolution Equations," 194, SpringerVerlag, Berlin, 2000. Google Scholar 
[5] 
K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay, Nonlienar Analysis, Theory, Methods and Applications, 64 (2006), 16901709. doi: 10.1016/j.na.2005.07.017. Google Scholar 
[6] 
K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases, Nonlienar Analysis, Theory, Methods and Applications, 70 (2009), 40084020. doi: 10.1016/j.na.2008.08.010. Google Scholar 
[7] 
J. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac, 21 (1978), 1141. Google Scholar 
[8] 
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," 1473, SpringerVerlag, Berlin, 1991. Google Scholar 
[9] 
T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations, Nonlinear Analysis, 30 (1997), 45654576. doi: 10.1016/S0362546X(97)003155. Google Scholar 
[10] 
T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations, Funkcialaj Ekvacioj, 43 (2000), 323337. Google Scholar 
[11] 
T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation, Bull. Univ.ElectroCommunications, 11 (1998), 2938. Google Scholar 
[12] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 44, SpringerVerlag, New York, 1983. Google Scholar 
[13] 
C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, Journal of Mathematical Analysis and Applications, 56 (1976), 397409. doi: 10.1016/0022247X(76)900524. Google Scholar 
[14] 
C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha$norm for partial functional differential equations, Transactions of the American Mathematical Society, 240 (1978), 129143. doi: 10.2307/1998809. Google Scholar 
[15] 
J. Wu, "Theory and Applications of Partial Functional Differential Equations," 119, SpringerVerlag, Berlin, 1996. Google Scholar 
show all references
References:
[1] 
M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations, Nonlinear Analysis, Theory, Methods and Applications, 71 (2009), 17091727. doi: 10.1016/j.na.2009.01.008. Google Scholar 
[2] 
R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$norm for some partial functinal differential equations with infinite delay, Differential and Integral Equations, 19 (2006), 545572. Google Scholar 
[3] 
O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis," 110, SpringerVerlag, New York, 1995. Google Scholar 
[4] 
K. J. Engel and R. Nagel, "OneParameter Semigroups of Linear Evolution Equations," 194, SpringerVerlag, Berlin, 2000. Google Scholar 
[5] 
K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay, Nonlienar Analysis, Theory, Methods and Applications, 64 (2006), 16901709. doi: 10.1016/j.na.2005.07.017. Google Scholar 
[6] 
K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases, Nonlienar Analysis, Theory, Methods and Applications, 70 (2009), 40084020. doi: 10.1016/j.na.2008.08.010. Google Scholar 
[7] 
J. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac, 21 (1978), 1141. Google Scholar 
[8] 
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," 1473, SpringerVerlag, Berlin, 1991. Google Scholar 
[9] 
T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations, Nonlinear Analysis, 30 (1997), 45654576. doi: 10.1016/S0362546X(97)003155. Google Scholar 
[10] 
T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations, Funkcialaj Ekvacioj, 43 (2000), 323337. Google Scholar 
[11] 
T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation, Bull. Univ.ElectroCommunications, 11 (1998), 2938. Google Scholar 
[12] 
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 44, SpringerVerlag, New York, 1983. Google Scholar 
[13] 
C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, Journal of Mathematical Analysis and Applications, 56 (1976), 397409. doi: 10.1016/0022247X(76)900524. Google Scholar 
[14] 
C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha$norm for partial functional differential equations, Transactions of the American Mathematical Society, 240 (1978), 129143. doi: 10.2307/1998809. Google Scholar 
[15] 
J. Wu, "Theory and Applications of Partial Functional Differential Equations," 119, SpringerVerlag, Berlin, 1996. Google Scholar 
[1] 
Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, 2021, 11 (2) : 353371. doi: 10.3934/mcrf.2020040 
[2] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermoviscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265279. doi: 10.3934/eect.2015.4.265 
[3] 
Gary Froyland, Cecilia GonzálezTokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249278. doi: 10.3934/jcd.2014.1.249 
[4] 
Aissa Guesmia, Nassereddine Tatar. Some wellposedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457491. doi: 10.3934/cpaa.2015.14.457 
[5] 
Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional NavierStokes delay differential inclusions. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 37133740. doi: 10.3934/dcdsb.2018312 
[6] 
Khalil Ezzinbi, James H. Liu, Nguyen Van Minh. Periodic solutions in fading memory spaces. Conference Publications, 2005, 2005 (Special) : 250257. doi: 10.3934/proc.2005.2005.250 
[7] 
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems  B, 2020, 25 (9) : 36513657. doi: 10.3934/dcdsb.2020077 
[8] 
Jin Liang, James H. Liu, TiJun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems  S, 2017, 10 (3) : 475485. doi: 10.3934/dcdss.2017023 
[9] 
Odo Diekmann, Karolína Korvasová. Linearization of solution operators for statedependent delay equations: A simple example. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 137149. doi: 10.3934/dcds.2016.36.137 
[10] 
Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 13951403. doi: 10.3934/proc.2011.2011.1395 
[11] 
Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations & Control Theory, 2013, 2 (1) : 119151. doi: 10.3934/eect.2013.2.119 
[12] 
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 27192743. doi: 10.3934/dcdsb.2018272 
[13] 
C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603610. doi: 10.3934/mbe.2009.6.603 
[14] 
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems  S, 2020, 13 (3) : 881888. doi: 10.3934/dcdss.2020051 
[15] 
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. Sasymptotically $ \omega $periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations & Control Theory, 2021, 10 (4) : 733748. doi: 10.3934/eect.2020089 
[16] 
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 25212531. doi: 10.3934/dcds.2012.32.2521 
[17] 
Adel M. AlMahdi, Mohammad M. AlGharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021086 
[18] 
Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the VlasovPoissonBoltzmann system. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 457472. doi: 10.3934/dcds.1999.5.457 
[19] 
Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems  B, 2020, 25 (6) : 22712292. doi: 10.3934/dcdsb.2019227 
[20] 
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the spacetime fractional diffusion equation involving the CaputoKatugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021026 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]