\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some remarks for a modified periodic Camassa-Holm system

Abstract Related Papers Cited by
  • This paper is concerned with a modified two-component periodic Camassa-Holm system. The local well-posedness and low regularity result of solution are established by using the techniques of pseudoparabolic regularization and some priori estimates derived from the equation itself. A wave-breaking for strong solutions and several results of blow-up solution with certain initial profiles are described. In addition, the initial boundary value problem for a modified two-component periodic Camassa-Holm system is also considered.
    Mathematics Subject Classification: Primary: 35G25; Secondary: 35B30, 35L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London A, 278 (1975), 555-601.doi: 10.1098/rsta.1975.0035.

    [2]

    A. Bressan and A. Constantin, Global conservation solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [3]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [4]

    R. Cammasa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [5]

    M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15.doi: 10.1007/s11005-005-0041-7.

    [6]

    A. Constantin, The hamiltonian structure of the Camassa-Holm equation, Expo. Math., 15 (1997), 53-85.

    [7]

    A. Constantin, On the inverse spectral problem for the Camasa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.doi: 10.1006/jfan.1997.3231.

    [8]

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier., 50 (2000), 321-362.

    [9]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [10]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [11]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 1992 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [12]

    A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

    [13]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., (1998), 229-243.doi: 10.1007/BF02392586.

    [14]

    A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1245.doi: 10.1512/iumj.1998.47.1466.

    [15]

    A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.doi: 10.1007/PL00004793.

    [16]

    A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [17]

    A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.doi: 10.1088/0266-5611/22/6/017.

    [18]

    A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132.doi: 10.1016/j.physleta.2008.10.050.

    [19]

    A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity over variable depth, with applicastions to tsuami, Fluid Dynam. Res., 40 (2008), 175-211.doi: 10.1016/j.fluiddyn.2007.06.004.

    [20]

    A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.doi: 10.1007/s10455-006-9042-8.

    [21]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [22]

    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [23]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1998), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

    [24]

    A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.doi: 10.1007/s002200050801.

    [25]

    G. Coclite, H. Holden and K. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069.doi: 10.1137/040616711.

    [26]

    R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.

    [27]

    J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.

    [28]

    J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equation, 33 (2008), 377-395.

    [29]

    J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.doi: 10.1016/j.jfa.2008.07.010.

    [30]

    Y. Fu and C. Qu, Well-posedness and blow-up solution for a new coupled Camassa-Holm system with peakons, J. Math. Phys., 50 (2009).

    [31]

    Y. Fu, Y. Liu and C. Qu, Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.doi: 10.1007/s00208-010-0483-9.

    [32]

    C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.

    [33]

    C. Guan, K. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemporary Mathematics, 526 (2010).

    [34]

    G. Gui and Y. LiuOn the cauchy problem for the two-component Camassa-Holm system, Math. Z. doi: 10.1007/s00209-009-0660-2.

    [35]

    G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.doi: 10.1016/j.jfa.2010.02.008.

    [36]

    D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606.doi: 10.3934/dcdsb.2009.12.597.

    [37]

    H. Holden and X. Raynaud, Global conservation solutions of the Camassa-Holm equation-A lagrangian point of view, Commun. Partial Differential Equation, 32 (2007), 1511-1549.

    [38]

    D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two component Camassa-Holm equation, Phy. Rev. E, 79 (2009), 1-13.doi: 10.1103/PhysRevE.79.016601.

    [39]

    D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys., 14 (2007), 303-312.doi: 10.2991/jnmp.2007.14.3.1.

    [40]

    R. Iorio and de Magãlhaes Iorio, "Fourier Analysis and Partial Differential Equation," Cambridge University Press, Cambridge, 2001.

    [41]

    R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 457 (2002), 63-82.

    [42]

    T. Kato, Quasi-linear equation of evolution, with application to partial differential equation, in "Spectral Theory and Differential Equations," Lecture Notes in Math., 448, Springer Verlag, Berlin, (1975), 25-70.

    [43]

    S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690.

    [44]

    M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics, in "Tsunami and Nonlinear Waves" (Ed. A. Kundu), Springer, Berlin, (2007), 31-49.doi: 10.1007/978-3-540-71256-5_2.

    [45]

    Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.

    [46]

    J. L. Lions, "Quelques Méthodes de Résolution des Problèaux Limites Nonlinéaires," Dunod, Gauthier-Villars, Paris, 1969.

    [47]

    H. P. McKean, Integrable systems and algebraic curves, Lecture Notes in Math., 755, Springer, Berlin, (1979), 83-200.

    [48]

    G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [49]

    V. Ovsienko and B. Khesin, The super Korteweg-de Vries equation as an Euler equation, Funktsional. Anal. i Prilozhen, 21 (1987), 81-82.

    [50]

    H. Segur, Waves in shallow water, with emphasis int the tsunami of 2004, in "Tsunami and Nonlinear Waves" (ed. A. Kundu), Springer, Berlin, (2007), 31-49.

    [51]

    W. Walter, "Differential and Integral Inequalities," Springer, New York, 1970.

    [52]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

    [53]

    Z. Yin, Well-posedness, global existence phenomena for an integrable shallow water equation, Discrete Contin. Dyn. Syst., 10 (2004), 393-411.doi: 10.3934/dcds.2004.11.393.

    [54]

    Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139.doi: 10.1016/S0022-247X(03)00250-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return