November  2011, 30(4): 1181-1189. doi: 10.3934/dcds.2011.30.1181

A directional uniformity of periodic point distribution and mixing

1. 

School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

Received  July 2010 Revised  November 2010 Published  May 2011

For mixing $\mathbb Z^d$-actions generated by commuting automorphisms of a compact abelian group, we investigate the directional uniformity of the rate of periodic point distribution and mixing. When each of these automorphisms has finite entropy, it is shown that directional mixing and directional convergence of the uniform measure supported on periodic points to Haar measure occurs at a uniform rate independent of the direction.
Citation: Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181
References:
[1]

A. Baker, Linear forms in the logarithms of algebraic numbers. IV,, Mathematika, 15 (1968), 204.  doi: 10.1112/S0025579300002588.  Google Scholar

[2]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[3]

M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.  doi: 10.1090/S0002-9947-97-01634-6.  Google Scholar

[4]

M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties,, J. Reine Angew. Math., 601 (2006), 139.  doi: 10.1515/CRELLE.2006.097.  Google Scholar

[5]

M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.  doi: 10.1090/S0002-9947-04-03554-8.  Google Scholar

[6]

M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.  doi: 10.1017/S014338570100181X.  Google Scholar

[7]

Bruce Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.   Google Scholar

[8]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[9]

D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms,, Ergodic Theory Dynamical Systems, 2 (1982), 49.  doi: 10.1017/S0143385700009573.  Google Scholar

[10]

R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.  doi: 10.1017/S0143385706000794.  Google Scholar

[11]

R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.  doi: 10.1017/S014338570600054X.  Google Scholar

[12]

R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.  doi: 10.1090/S0002-9939-07-09018-1.  Google Scholar

[13]

K. Schmidt, "Dynamical Systems of Algebraic Origin,", Progress in Mathematics, 128 (1995).   Google Scholar

[14]

T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups,, Israel J. Math., 79 (1992), 225.  doi: 10.1007/BF02808217.  Google Scholar

[15]

K. R. Yu, Linear forms in p-adic logarithms. II,, Compositio Math., 74 (1990), 15.   Google Scholar

show all references

References:
[1]

A. Baker, Linear forms in the logarithms of algebraic numbers. IV,, Mathematika, 15 (1968), 204.  doi: 10.1112/S0025579300002588.  Google Scholar

[2]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[3]

M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.  doi: 10.1090/S0002-9947-97-01634-6.  Google Scholar

[4]

M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties,, J. Reine Angew. Math., 601 (2006), 139.  doi: 10.1515/CRELLE.2006.097.  Google Scholar

[5]

M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.  doi: 10.1090/S0002-9947-04-03554-8.  Google Scholar

[6]

M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.  doi: 10.1017/S014338570100181X.  Google Scholar

[7]

Bruce Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.   Google Scholar

[8]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).   Google Scholar

[9]

D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms,, Ergodic Theory Dynamical Systems, 2 (1982), 49.  doi: 10.1017/S0143385700009573.  Google Scholar

[10]

R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.  doi: 10.1017/S0143385706000794.  Google Scholar

[11]

R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.  doi: 10.1017/S014338570600054X.  Google Scholar

[12]

R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.  doi: 10.1090/S0002-9939-07-09018-1.  Google Scholar

[13]

K. Schmidt, "Dynamical Systems of Algebraic Origin,", Progress in Mathematics, 128 (1995).   Google Scholar

[14]

T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups,, Israel J. Math., 79 (1992), 225.  doi: 10.1007/BF02808217.  Google Scholar

[15]

K. R. Yu, Linear forms in p-adic logarithms. II,, Compositio Math., 74 (1990), 15.   Google Scholar

[1]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[2]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[3]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[4]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[5]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[6]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[7]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[8]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[11]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[15]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]