-
Previous Article
New entropy conditions for scalar conservation laws with discontinuous flux
- DCDS Home
- This Issue
-
Next Article
Some remarks for a modified periodic Camassa-Holm system
A directional uniformity of periodic point distribution and mixing
1. | School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom |
References:
[1] |
A. Baker, Linear forms in the logarithms of algebraic numbers. IV,, Mathematika, 15 (1968), 204.
doi: 10.1112/S0025579300002588. |
[2] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).
|
[3] |
M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.
doi: 10.1090/S0002-9947-97-01634-6. |
[4] |
M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties,, J. Reine Angew. Math., 601 (2006), 139.
doi: 10.1515/CRELLE.2006.097. |
[5] |
M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.
doi: 10.1090/S0002-9947-04-03554-8. |
[6] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.
doi: 10.1017/S014338570100181X. |
[7] |
Bruce Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.
|
[8] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[9] |
D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms,, Ergodic Theory Dynamical Systems, 2 (1982), 49.
doi: 10.1017/S0143385700009573. |
[10] |
R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.
doi: 10.1017/S0143385706000794. |
[11] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.
doi: 10.1017/S014338570600054X. |
[12] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.
doi: 10.1090/S0002-9939-07-09018-1. |
[13] |
K. Schmidt, "Dynamical Systems of Algebraic Origin,", Progress in Mathematics, 128 (1995).
|
[14] |
T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups,, Israel J. Math., 79 (1992), 225.
doi: 10.1007/BF02808217. |
[15] |
K. R. Yu, Linear forms in p-adic logarithms. II,, Compositio Math., 74 (1990), 15.
|
show all references
References:
[1] |
A. Baker, Linear forms in the logarithms of algebraic numbers. IV,, Mathematika, 15 (1968), 204.
doi: 10.1112/S0025579300002588. |
[2] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).
|
[3] |
M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.
doi: 10.1090/S0002-9947-97-01634-6. |
[4] |
M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical varieties,, J. Reine Angew. Math., 601 (2006), 139.
doi: 10.1515/CRELLE.2006.097. |
[5] |
M. Einsiedler and D. Lind, Algebraic $\mathbb Z^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.
doi: 10.1090/S0002-9947-04-03554-8. |
[6] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.
doi: 10.1017/S014338570100181X. |
[7] |
Bruce Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.
|
[8] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[9] |
D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms,, Ergodic Theory Dynamical Systems, 2 (1982), 49.
doi: 10.1017/S0143385700009573. |
[10] |
R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.
doi: 10.1017/S0143385706000794. |
[11] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.
doi: 10.1017/S014338570600054X. |
[12] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.
doi: 10.1090/S0002-9939-07-09018-1. |
[13] |
K. Schmidt, "Dynamical Systems of Algebraic Origin,", Progress in Mathematics, 128 (1995).
|
[14] |
T. Ward, The Bernoulli property for expansive $\mathbb Z$2 actions on compact groups,, Israel J. Math., 79 (1992), 225.
doi: 10.1007/BF02808217. |
[15] |
K. R. Yu, Linear forms in p-adic logarithms. II,, Compositio Math., 74 (1990), 15.
|
[1] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[2] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[3] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[4] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[5] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[6] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[7] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[11] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[15] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[16] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[17] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]