November  2011, 30(4): 1191-1210. doi: 10.3934/dcds.2011.30.1191

New entropy conditions for scalar conservation laws with discontinuous flux

1. 

Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica

Received  April 2010 Revised  July 2010 Published  May 2011

We propose new Kruzhkov type entropy conditions for one dimensional scalar conservation law with a discontinuous flux. We prove existence and uniqueness of the entropy admissible weak solution to the corresponding Cauchy problem merely under assumptions on the flux which provide the maximum principle. In particular, we allow multiple flux crossings and we do not need any kind of genuine nonlinearity conditions.
Citation: Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191
References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

show all references

References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.   Google Scholar

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783.  doi: 10.1142/S0219891605000622.  Google Scholar

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127.  doi: 10.3934/nhm.2007.2.127.  Google Scholar

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.   Google Scholar

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().   Google Scholar

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253.  doi: 10.1017/S0308210500003863.  Google Scholar

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371.  doi: 10.1080/03605300500358095.  Google Scholar

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684.  doi: 10.1137/07069314X.  Google Scholar

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387.  doi: 10.1007/s10665-007-9148-4.  Google Scholar

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425.  doi: 10.1137/S0036141093242533.  Google Scholar

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.   Google Scholar

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127.  doi: 10.1142/S0219891609001794.  Google Scholar

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).   Google Scholar

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009).  doi: 10.1155/2009/279818.  Google Scholar

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761.  doi: 10.1080/03605309108820822.  Google Scholar

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.   Google Scholar

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23.  doi: 10.1023/A:1011574824970.  Google Scholar

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.   Google Scholar

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().   Google Scholar

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.   Google Scholar

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287.  doi: 10.1142/S0252959904000299.  Google Scholar

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217.  doi: 10.1070/SM1970v010n02ABEH002156.  Google Scholar

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495.  doi: 10.1007/s00205-007-0055-7.  Google Scholar

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163.  doi: 10.3934/nhm.2010.5.163.  Google Scholar

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729.  doi: 10.1142/S0219891607001343.  Google Scholar

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525.  doi: 10.1142/S0219891609001915.  Google Scholar

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26.  doi: 10.1137/080724587.  Google Scholar

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643.  doi: 10.1007/s00205-009-0217-x.  Google Scholar

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).   Google Scholar

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).   Google Scholar

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).   Google Scholar

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.   Google Scholar

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335.  doi: 10.1016/S0196-8858(82)80010-9.  Google Scholar

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181.  doi: 10.1007/s002050100157.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[5]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[6]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[14]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[15]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]