November  2011, 30(4): 1237-1242. doi: 10.3934/dcds.2011.30.1237

Zero entropy versus infinite entropy

1. 

School of Mathematical Science, Peking University, Beijing 100871, China, China

Received  June 2010 Revised  December 2010 Published  May 2011

We construct a pair of equivalent flows with fixed points, such that one has infinite topological entropy and the other has zero topological entropy.
Citation: Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237
References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.  doi: 10.2977/prims/1195187508.  Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.  doi: 10.1007/BF01239009.  Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.  doi: 10.1090/S0002-9947-08-04743-0.  Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.  doi: 10.2307/2001256.  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).   Google Scholar

show all references

References:
[1]

T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.  doi: 10.2977/prims/1195187508.  Google Scholar

[2]

W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.  doi: 10.1007/BF01239009.  Google Scholar

[3]

W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.  doi: 10.1090/S0002-9947-08-04743-0.  Google Scholar

[4]

R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.  doi: 10.2307/2001256.  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).   Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[6]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]