-
Previous Article
A criterion for topological entropy to decrease under normalised Ricci flow
- DCDS Home
- This Issue
-
Next Article
Mathematical retroreflectors
Zero entropy versus infinite entropy
1. | School of Mathematical Science, Peking University, Beijing 100871, China, China |
References:
[1] |
T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.
doi: 10.2977/prims/1195187508. |
[2] |
W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.
doi: 10.1007/BF01239009. |
[3] |
W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.
doi: 10.1090/S0002-9947-08-04743-0. |
[4] |
R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.
doi: 10.2307/2001256. |
[5] |
P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).
|
show all references
References:
[1] |
T. Ohno, A weak equivalence and topological entropy,, Publ. RIMS, 16 (1980), 289.
doi: 10.2977/prims/1195187508. |
[2] |
W. Sun and E. Vargas, Entropy of flows, revisited,, Bol. Soc. Bra. Mat., 30 (1999), 313.
doi: 10.1007/BF01239009. |
[3] |
W. Sun, T. Young and Y. Zhou, Topological entropies of equivalent smooth flows,, Trans. Amer. Math. Soc., 361 (2009), 3071.
doi: 10.1090/S0002-9947-08-04743-0. |
[4] |
R. Thomas, Topological entropy of fixed-point free flows,, Trans. Amer. Math. Soc., 319 (1985), 601.
doi: 10.2307/2001256. |
[5] |
P. Walters, "An Introduction to Ergodic Theory,", "An Introduction to Ergodic Theory,", (1982).
|
[1] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[2] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[5] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[6] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]