-
Previous Article
Multiple solutions for superlinear elliptic systems of Hamiltonian type
- DCDS Home
- This Issue
-
Next Article
Zero entropy versus infinite entropy
A criterion for topological entropy to decrease under normalised Ricci flow
1. | Department of Mathematics, Pennsylvania State University, University Park, State College, PA 16802, United States |
References:
[1] |
G. Besson, G. Courtois and S. Gallot, Minimal entropy and Mostow's rigidity theorems,, Ergodic Theory Dynam. Systems, 16 (1996), 623.
|
[2] |
R. Bowen, Periodic orbits for hyperbolic flows,, American J. Math., 94 (1972), 1.
doi: 10.2307/2373590. |
[3] |
K. Burns and G. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281.
doi: 10.1088/0951-7715/15/2/305. |
[4] |
B. Chow and D. Knopf, "The Ricci Flow: An introduction,", Mathematical Surveys and Monographs, 110 (2004).
|
[5] |
G. Contreras, Regularity of topological entropy of hyperbolic flows,, Math. Z., 210 (1992), 97.
doi: 10.1007/BF02571785. |
[6] |
F. T. Farrell and P. Ontaneda, A caveat on the convergence of the Ricci flow for pinched negatively curved manifolds,, Asian J. Math., 9 (2005), 401.
|
[7] |
L. Flaminio, Local entropy rigidity for hyperbolic manifolds,, Comm. Anal. Geom., 3 (1995), 555.
|
[8] |
A. Freire and R. Mané, On the entropy of geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.
doi: 10.1007/BF01389360. |
[9] |
R. Hamilton, The formation of singularities in the Ricci flow,, Surveys in Differential Geometry, 2 (1995), 7.
|
[10] |
D. Jane, An example of how the Ricci flow can increase topological entropy,, Ergodic Theory Dynam. Systems, 27 (2007), 1919.
doi: 10.1017/S0143385707000211. |
[11] |
A. Katok, Entropy and closed geodesics,, Ergodic Theory Dynam. Systems, 2 (1982), 339.
doi: 10.1017/S0143385700001656. |
[12] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", "Encyclopedia of Mathematics and its Applications,", 54 (1995).
|
[13] |
A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581.
doi: 10.1007/BF01393838. |
[14] |
A. Katok, G. Knieper and H. Weiss, Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows,, Comm. Math. Phys., 138 (1991), 19.
doi: 10.1007/BF02099667. |
[15] |
G. Knieper, A second derivative formula of the Liouville entropy at spaces of constant negative curvature,, Ergodic Theory Dynam. Systems, 17 (1997), 1131.
doi: 10.1017/S0143385797086446. |
[16] |
A. Manning, Topological entropy for geodesic flows,, Ann. Math., 110 (1979), 567.
doi: 10.2307/1971239. |
[17] |
A. Manning, The volume entropy of a surface decreases along the Ricci flow,, Ergodic Theory Dynam. Systems, 24 (2004), 171.
doi: 10.1017/S0143385703000415. |
[18] |
J. Morgan and G. Tian, "Ricci Flow and the Poincaré Conjecture,", Clay Mathematics Monographs, 3 (2007).
|
[19] |
R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows,, Invent. Math., 77 (1984), 455.
doi: 10.1007/BF01388833. |
[20] |
G. Paternain and J. Petean, The pressure of Ricci curvature,, Geometriae Dedicata, 100 (2003), 93.
doi: 10.1023/A:1025842932050. |
[21] |
R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics,, in, 1365 (1987), 120.
|
[22] |
P. Topping, "Lectures on the Ricci Flow,", LMS Lecture Note Series, 325 (2006).
|
[23] |
P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).
|
[24] |
R. Ye, Ricci flow, Einstein metrics and space forms,, Trans. Amer. Math. Soc., 338 (1993), 871.
doi: 10.2307/2154433. |
show all references
References:
[1] |
G. Besson, G. Courtois and S. Gallot, Minimal entropy and Mostow's rigidity theorems,, Ergodic Theory Dynam. Systems, 16 (1996), 623.
|
[2] |
R. Bowen, Periodic orbits for hyperbolic flows,, American J. Math., 94 (1972), 1.
doi: 10.2307/2373590. |
[3] |
K. Burns and G. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281.
doi: 10.1088/0951-7715/15/2/305. |
[4] |
B. Chow and D. Knopf, "The Ricci Flow: An introduction,", Mathematical Surveys and Monographs, 110 (2004).
|
[5] |
G. Contreras, Regularity of topological entropy of hyperbolic flows,, Math. Z., 210 (1992), 97.
doi: 10.1007/BF02571785. |
[6] |
F. T. Farrell and P. Ontaneda, A caveat on the convergence of the Ricci flow for pinched negatively curved manifolds,, Asian J. Math., 9 (2005), 401.
|
[7] |
L. Flaminio, Local entropy rigidity for hyperbolic manifolds,, Comm. Anal. Geom., 3 (1995), 555.
|
[8] |
A. Freire and R. Mané, On the entropy of geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.
doi: 10.1007/BF01389360. |
[9] |
R. Hamilton, The formation of singularities in the Ricci flow,, Surveys in Differential Geometry, 2 (1995), 7.
|
[10] |
D. Jane, An example of how the Ricci flow can increase topological entropy,, Ergodic Theory Dynam. Systems, 27 (2007), 1919.
doi: 10.1017/S0143385707000211. |
[11] |
A. Katok, Entropy and closed geodesics,, Ergodic Theory Dynam. Systems, 2 (1982), 339.
doi: 10.1017/S0143385700001656. |
[12] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", "Encyclopedia of Mathematics and its Applications,", 54 (1995).
|
[13] |
A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows,, Invent. Math., 98 (1989), 581.
doi: 10.1007/BF01393838. |
[14] |
A. Katok, G. Knieper and H. Weiss, Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows,, Comm. Math. Phys., 138 (1991), 19.
doi: 10.1007/BF02099667. |
[15] |
G. Knieper, A second derivative formula of the Liouville entropy at spaces of constant negative curvature,, Ergodic Theory Dynam. Systems, 17 (1997), 1131.
doi: 10.1017/S0143385797086446. |
[16] |
A. Manning, Topological entropy for geodesic flows,, Ann. Math., 110 (1979), 567.
doi: 10.2307/1971239. |
[17] |
A. Manning, The volume entropy of a surface decreases along the Ricci flow,, Ergodic Theory Dynam. Systems, 24 (2004), 171.
doi: 10.1017/S0143385703000415. |
[18] |
J. Morgan and G. Tian, "Ricci Flow and the Poincaré Conjecture,", Clay Mathematics Monographs, 3 (2007).
|
[19] |
R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows,, Invent. Math., 77 (1984), 455.
doi: 10.1007/BF01388833. |
[20] |
G. Paternain and J. Petean, The pressure of Ricci curvature,, Geometriae Dedicata, 100 (2003), 93.
doi: 10.1023/A:1025842932050. |
[21] |
R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics,, in, 1365 (1987), 120.
|
[22] |
P. Topping, "Lectures on the Ricci Flow,", LMS Lecture Note Series, 325 (2006).
|
[23] |
P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).
|
[24] |
R. Ye, Ricci flow, Einstein metrics and space forms,, Trans. Amer. Math. Soc., 338 (1993), 871.
doi: 10.2307/2154433. |
[1] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[2] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[3] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[4] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[5] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[6] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[7] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[8] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]