November  2011, 30(4): 1249-1262. doi: 10.3934/dcds.2011.30.1249

Multiple solutions for superlinear elliptic systems of Hamiltonian type

1. 

Department of Mathematics, Yunnan Normal University, Kunming 650092 Yunnan

2. 

Department of Mathematics, Zhaotong Teacher’s College, Zhaotong 657000 Yunnan

Received  March 2010 Revised  May 2010 Published  May 2011

This paper is concerned with the following periodic Hamiltonian elliptic system

$\-\Delta \varphi+V(x)\varphi=G_\psi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\-\Delta \psi+V(x)\psi=G_\varphi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\varphi(x)\to 0$ and $\psi(x)\to0$ as $|x|\to\infty.$

Assuming the potential $V$ is periodic and $0$ lies in a gap of $\sigma(-\Delta+V)$, $G(x,\eta)$ is periodic in $x$ and superquadratic in $\eta=(\varphi,\psi)$, existence and multiplicity of solutions are obtained via variational approach.
Citation: Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249
References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[3]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673.  doi: 10.1016/S0022-247X(02)00413-4.  Google Scholar

[4]

A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459.   Google Scholar

[5]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348.   Google Scholar

[6]

T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51.   Google Scholar

[7]

T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1.  doi: 10.1002/mana.200410420.  Google Scholar

[8]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241.  doi: 10.1007/BF01389883.  Google Scholar

[9]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[10]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[11]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973.  doi: 10.1090/S0002-9947-03-03257-4.  Google Scholar

[12]

D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[13]

D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[14]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[15]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007).  doi: 10.1142/9789812709639.  Google Scholar

[16]

Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473.  doi: 10.1016/j.jde.2007.03.005.  Google Scholar

[17]

Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829.   Google Scholar

[18]

J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[19]

W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181.  doi: 10.1090/S0002-9947-97-01963-6.  Google Scholar

[20]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441.   Google Scholar

[21]

G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[22]

G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925.   Google Scholar

[23]

A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160.   Google Scholar

[24]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[25]

E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133.   Google Scholar

[26]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445.   Google Scholar

[27]

C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431.   Google Scholar

[28]

J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949.  doi: 10.1016/j.na.2009.09.035.  Google Scholar

[29]

M. Willem, "Minimax Theorems,", Birkhäuser, (1996).   Google Scholar

[30]

J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343.   Google Scholar

[31]

F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673.   Google Scholar

[32]

F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77.  doi: 10.1051/cocv:2008064.  Google Scholar

show all references

References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[3]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673.  doi: 10.1016/S0022-247X(02)00413-4.  Google Scholar

[4]

A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459.   Google Scholar

[5]

A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348.   Google Scholar

[6]

T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51.   Google Scholar

[7]

T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1.  doi: 10.1002/mana.200410420.  Google Scholar

[8]

V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241.  doi: 10.1007/BF01389883.  Google Scholar

[9]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693.  doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[10]

V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217.  doi: 10.1002/cpa.3160451002.  Google Scholar

[11]

D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973.  doi: 10.1090/S0002-9947-03-03257-4.  Google Scholar

[12]

D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97.   Google Scholar

[13]

D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[14]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[15]

Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007).  doi: 10.1142/9789812709639.  Google Scholar

[16]

Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473.  doi: 10.1016/j.jde.2007.03.005.  Google Scholar

[17]

Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829.   Google Scholar

[18]

J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[19]

W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181.  doi: 10.1090/S0002-9947-97-01963-6.  Google Scholar

[20]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441.   Google Scholar

[21]

G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763.  doi: 10.1142/S0219199702000853.  Google Scholar

[22]

G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925.   Google Scholar

[23]

A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160.   Google Scholar

[24]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[25]

E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133.   Google Scholar

[26]

B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445.   Google Scholar

[27]

C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431.   Google Scholar

[28]

J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949.  doi: 10.1016/j.na.2009.09.035.  Google Scholar

[29]

M. Willem, "Minimax Theorems,", Birkhäuser, (1996).   Google Scholar

[30]

J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343.   Google Scholar

[31]

F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673.   Google Scholar

[32]

F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77.  doi: 10.1051/cocv:2008064.  Google Scholar

[1]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[2]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[3]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[4]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[5]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[6]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[9]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[10]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[16]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[17]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[18]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[19]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[20]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]