\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum

Abstract Related Papers Cited by
  • In this paper, we study the asymptotic behavior of solutions to one-dimensional compressible Navier-Stokes equations with gravity and vacuum for isentropic flows with density-dependent viscosity $\mu(\rho)=c\rho^{\theta}$. Under some suitable assumptions on the initial date and $\gamma>1$, if $\theta\in(0,\frac{\gamma}{2}]$, we prove the weak solution $(\rho(x,t),u(x,t))$ behavior asymptotically to the stationary one by adapting and modifying the technique of weighted estimates. This result improves the one in [5] where Duan showed that the weak solution converges to the stationary one in the sense of integral for shallow water model. In addition, if $\theta\in(0,\frac{\gamma}{2}]\cap(0,\gamma-1]$, following the same idea in [9], we estimate the stabilization rate of the solution as time tends to infinity in the sense of $L^\infty$ norm, weighted $L^2$ norm and weighted $H^1$ norm.
    Mathematics Subject Classification: Primary: 76D05, 35B45, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

    [2]

    D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.

    [3]

    S. Chapman and T.-G. Cowling, "The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases," 3rd edition, prepared in co-operation with D. Burnett, Cambridge University Press, London, 1970.

    [4]

    G.-Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary, Comm. Partial Differential Equations, 27 (2002), 907-943.

    [5]

    Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model, J. Differential Equations, 250 (2011), 2687-2714.

    [6]

    D.-Y. Fang and T. Zhang, Copressible Navier-Stokes equations with vacuum state in the case of general pressure law, Math. Methods Appl. Sci., 29 (2006), 1081-1106.doi: 10.1002/mma.708.

    [7]

    D.-Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Comm. Pure Appl. Anal., 3 (2004), 675-694.doi: 10.3934/cpaa.2004.3.675.

    [8]

    D.-Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data, J. Differential Equations, 222 (2006), 63-94.

    [9]

    D.-Y. Fang and T. Zhang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient, Arch. Rational Mech. Anal., 182 (2006), 223-253.doi: 10.1007/s00205-006-0425-6.

    [10]

    D.-Y. Fang and T. Zhang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, Nonlinear Anal., Real World Appl., 10 (2009), 2272-2285.

    [11]

    D.-Y. Fang and T. Zhang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients, Arch. Rational Mech. Anal., 191 (2009), 195-243.doi: 10.1007/s00205-008-0183-8.

    [12]

    E. Feireisl, A. Novotny and H. Petzeltov, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.

    [13]

    Z.-H. Guo and C.-J. Zhu, Remarks on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Acta Math. Sinica, Ser. B, 26 (2010), 2015-2030.

    [14]

    Z.-H. Guo and C.-J. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 248 (2010), 2768-2799.

    [15]

    Z.-H. Guo, Q.-S. Jiu and Z.-P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.doi: 10.1137/070680333.

    [16]

    D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data, Proc. Roy. Soc. Edinburgh, Sect. A, 103 (1986), 301-315.

    [17]

    D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rational Mech. Anal., 132 (1995), 1-14.doi: 10.1007/BF00390346.

    [18]

    D. Hoff and T.-P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data, Indiana Univ. Math. J., 38 (1989), 861-915.doi: 10.1512/iumj.1989.38.38041.

    [19]

    D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.doi: 10.1137/0151043.

    [20]

    S. Jiang, Z.-P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251.

    [21]

    P.-L. Lions, "Mathematical Topics in Fluid Mechanics," Oxford: Clarendon Press, 2, 1998.

    [22]

    T.-P. Liu, Z.-P. Xin and T. Yang, Vacuum states of compressible flow, Discrete Contin. Dynam. Systems, 4 (1998), 1-32.

    [23]

    T. Luo, Z.-P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.doi: 10.1137/S0036141097331044.

    [24]

    A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of compressible viscous and heat conducting fluids, Proc. Japan Acad., Ser. A, 55 (1979), 337-342.

    [25]

    A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

    [26]

    A. Mellet and A. Vasseur, On the isentropic compressible Navier-Stokes equation, Comm. Partial Differential Equations, 32 (2007), 431-452.

    [27]

    M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.doi: 10.1007/BF03167921.

    [28]

    M. Okada and T. Makino, Free boundary problem for the equations of spherically symmetrical motion of viscous gas, Japan J. Indust. Appl. Math., 10 (1993), 219-235.

    [29]

    M. Okada, Free boundary problem for one-dimensional motion of compressible gas and vaccum, Japan J. Indust. Appl. Math., (2004), 109-128.

    [30]

    X. Qin, Z.-A. Yao and H. Zhao, One dimensional compressible Navier-Stokes euqaitons with density-dependent viscosity and free boudnaries, Comm. Pure Appl. Anal., 7 (2008), 373-381.

    [31]

    I. Straskraba and A. Zlotnik, Global behavior of 1D-viscous compressible barotropic fluid with a free boundary and large data, J. Math. Fluid Mech., 5 (2003), 119-143.

    [32]

    Z.-G. Wu and C.-J. Zhu, Vacuum problem for 1D compressible Navier-Stokes equations with gravity and general pressure law, Z. Angew. Math. Phys., 60 (2009), 246-270.doi: 10.1007/s00033-008-6109-3.

    [33]

    S.-W. Vong, T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II), J. Differential Equations, 192 (2003), 475-501.

    [34]

    T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.

    [35]

    T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier- Stokes equations with density-dependent viscosity, J. Differential Equations, 184 (2002), 163-184.

    [36]

    T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.doi: 10.1007/s00220-002-0703-6.

    [37]

    C.-J. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacumm, Comm. Math. Phys., 293 (2010), 279-299.doi: 10.1007/s00220-009-0914-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return