November  2011, 30(4): 1263-1283. doi: 10.3934/dcds.2011.30.1263

Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum

1. 

Laboratory of Nonlinear Analysis, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China, China

Received  June 2010 Revised  August 2010 Published  May 2011

In this paper, we study the asymptotic behavior of solutions to one-dimensional compressible Navier-Stokes equations with gravity and vacuum for isentropic flows with density-dependent viscosity $\mu(\rho)=c\rho^{\theta}$. Under some suitable assumptions on the initial date and $\gamma>1$, if $\theta\in(0,\frac{\gamma}{2}]$, we prove the weak solution $(\rho(x,t),u(x,t))$ behavior asymptotically to the stationary one by adapting and modifying the technique of weighted estimates. This result improves the one in [5] where Duan showed that the weak solution converges to the stationary one in the sense of integral for shallow water model. In addition, if $\theta\in(0,\frac{\gamma}{2}]\cap(0,\gamma-1]$, following the same idea in [9], we estimate the stabilization rate of the solution as time tends to infinity in the sense of $L^\infty$ norm, weighted $L^2$ norm and weighted $H^1$ norm.
Citation: Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263
References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.   Google Scholar

[2]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.   Google Scholar

[3]

S. Chapman and T.-G. Cowling, "The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases,", 3rd edition, (1970).   Google Scholar

[4]

G.-Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary,, Comm. Partial Differential Equations, 27 (2002), 907.   Google Scholar

[5]

Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model,, J. Differential Equations, 250 (2011), 2687.   Google Scholar

[6]

D.-Y. Fang and T. Zhang, Copressible Navier-Stokes equations with vacuum state in the case of general pressure law,, Math. Methods Appl. Sci., 29 (2006), 1081.  doi: 10.1002/mma.708.  Google Scholar

[7]

D.-Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[8]

D.-Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data,, J. Differential Equations, 222 (2006), 63.   Google Scholar

[9]

D.-Y. Fang and T. Zhang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Arch. Rational Mech. Anal., 182 (2006), 223.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[10]

D.-Y. Fang and T. Zhang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, Nonlinear Anal., 10 (2009), 2272.   Google Scholar

[11]

D.-Y. Fang and T. Zhang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients,, Arch. Rational Mech. Anal., 191 (2009), 195.  doi: 10.1007/s00205-008-0183-8.  Google Scholar

[12]

E. Feireisl, A. Novotny and H. Petzeltov, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.   Google Scholar

[13]

Z.-H. Guo and C.-J. Zhu, Remarks on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Acta Math. Sinica, 26 (2010), 2015.   Google Scholar

[14]

Z.-H. Guo and C.-J. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, J. Differential Equations, 248 (2010), 2768.   Google Scholar

[15]

Z.-H. Guo, Q.-S. Jiu and Z.-P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM J. Math. Anal., 39 (2008), 1402.  doi: 10.1137/070680333.  Google Scholar

[16]

D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data,, Proc. Roy. Soc. Edinburgh, 103 (1986), 301.   Google Scholar

[17]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.  doi: 10.1007/BF00390346.  Google Scholar

[18]

D. Hoff and T.-P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861.  doi: 10.1512/iumj.1989.38.38041.  Google Scholar

[19]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[20]

S. Jiang, Z.-P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239.   Google Scholar

[21]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics,", Oxford: Clarendon Press, 2 (1998).   Google Scholar

[22]

T.-P. Liu, Z.-P. Xin and T. Yang, Vacuum states of compressible flow,, Discrete Contin. Dynam. Systems, 4 (1998), 1.   Google Scholar

[23]

T. Luo, Z.-P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[24]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of compressible viscous and heat conducting fluids,, Proc. Japan Acad., 55 (1979), 337.   Google Scholar

[25]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of viscous and heat conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[26]

A. Mellet and A. Vasseur, On the isentropic compressible Navier-Stokes equation,, Comm. Partial Differential Equations, 32 (2007), 431.   Google Scholar

[27]

M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas,, Japan J. Appl. Math., 6 (1989), 161.  doi: 10.1007/BF03167921.  Google Scholar

[28]

M. Okada and T. Makino, Free boundary problem for the equations of spherically symmetrical motion of viscous gas,, Japan J. Indust. Appl. Math., 10 (1993), 219.   Google Scholar

[29]

M. Okada, Free boundary problem for one-dimensional motion of compressible gas and vaccum,, Japan J. Indust. Appl. Math., (2004), 109.   Google Scholar

[30]

X. Qin, Z.-A. Yao and H. Zhao, One dimensional compressible Navier-Stokes euqaitons with density-dependent viscosity and free boudnaries,, Comm. Pure Appl. Anal., 7 (2008), 373.   Google Scholar

[31]

I. Straskraba and A. Zlotnik, Global behavior of 1D-viscous compressible barotropic fluid with a free boundary and large data,, J. Math. Fluid Mech., 5 (2003), 119.   Google Scholar

[32]

Z.-G. Wu and C.-J. Zhu, Vacuum problem for 1D compressible Navier-Stokes equations with gravity and general pressure law,, Z. Angew. Math. Phys., 60 (2009), 246.  doi: 10.1007/s00033-008-6109-3.  Google Scholar

[33]

S.-W. Vong, T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II),, J. Differential Equations, 192 (2003), 475.   Google Scholar

[34]

T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Differential Equations, 26 (2001), 965.   Google Scholar

[35]

T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier- Stokes equations with density-dependent viscosity,, J. Differential Equations, 184 (2002), 163.   Google Scholar

[36]

T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329.  doi: 10.1007/s00220-002-0703-6.  Google Scholar

[37]

C.-J. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacumm,, Comm. Math. Phys., 293 (2010), 279.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

show all references

References:
[1]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.   Google Scholar

[2]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.   Google Scholar

[3]

S. Chapman and T.-G. Cowling, "The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases,", 3rd edition, (1970).   Google Scholar

[4]

G.-Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat conducting flow with symmetry and free boundary,, Comm. Partial Differential Equations, 27 (2002), 907.   Google Scholar

[5]

Q. Duan, On the dynamics of Navier-Stokes equations for a shallow water model,, J. Differential Equations, 250 (2011), 2687.   Google Scholar

[6]

D.-Y. Fang and T. Zhang, Copressible Navier-Stokes equations with vacuum state in the case of general pressure law,, Math. Methods Appl. Sci., 29 (2006), 1081.  doi: 10.1002/mma.708.  Google Scholar

[7]

D.-Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[8]

D.-Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data,, J. Differential Equations, 222 (2006), 63.   Google Scholar

[9]

D.-Y. Fang and T. Zhang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Arch. Rational Mech. Anal., 182 (2006), 223.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[10]

D.-Y. Fang and T. Zhang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, Nonlinear Anal., 10 (2009), 2272.   Google Scholar

[11]

D.-Y. Fang and T. Zhang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients,, Arch. Rational Mech. Anal., 191 (2009), 195.  doi: 10.1007/s00205-008-0183-8.  Google Scholar

[12]

E. Feireisl, A. Novotny and H. Petzeltov, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.   Google Scholar

[13]

Z.-H. Guo and C.-J. Zhu, Remarks on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Acta Math. Sinica, 26 (2010), 2015.   Google Scholar

[14]

Z.-H. Guo and C.-J. Zhu, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, J. Differential Equations, 248 (2010), 2768.   Google Scholar

[15]

Z.-H. Guo, Q.-S. Jiu and Z.-P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM J. Math. Anal., 39 (2008), 1402.  doi: 10.1137/070680333.  Google Scholar

[16]

D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data,, Proc. Roy. Soc. Edinburgh, 103 (1986), 301.   Google Scholar

[17]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.  doi: 10.1007/BF00390346.  Google Scholar

[18]

D. Hoff and T.-P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861.  doi: 10.1512/iumj.1989.38.38041.  Google Scholar

[19]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[20]

S. Jiang, Z.-P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239.   Google Scholar

[21]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics,", Oxford: Clarendon Press, 2 (1998).   Google Scholar

[22]

T.-P. Liu, Z.-P. Xin and T. Yang, Vacuum states of compressible flow,, Discrete Contin. Dynam. Systems, 4 (1998), 1.   Google Scholar

[23]

T. Luo, Z.-P. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[24]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of compressible viscous and heat conducting fluids,, Proc. Japan Acad., 55 (1979), 337.   Google Scholar

[25]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of viscous and heat conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[26]

A. Mellet and A. Vasseur, On the isentropic compressible Navier-Stokes equation,, Comm. Partial Differential Equations, 32 (2007), 431.   Google Scholar

[27]

M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas,, Japan J. Appl. Math., 6 (1989), 161.  doi: 10.1007/BF03167921.  Google Scholar

[28]

M. Okada and T. Makino, Free boundary problem for the equations of spherically symmetrical motion of viscous gas,, Japan J. Indust. Appl. Math., 10 (1993), 219.   Google Scholar

[29]

M. Okada, Free boundary problem for one-dimensional motion of compressible gas and vaccum,, Japan J. Indust. Appl. Math., (2004), 109.   Google Scholar

[30]

X. Qin, Z.-A. Yao and H. Zhao, One dimensional compressible Navier-Stokes euqaitons with density-dependent viscosity and free boudnaries,, Comm. Pure Appl. Anal., 7 (2008), 373.   Google Scholar

[31]

I. Straskraba and A. Zlotnik, Global behavior of 1D-viscous compressible barotropic fluid with a free boundary and large data,, J. Math. Fluid Mech., 5 (2003), 119.   Google Scholar

[32]

Z.-G. Wu and C.-J. Zhu, Vacuum problem for 1D compressible Navier-Stokes equations with gravity and general pressure law,, Z. Angew. Math. Phys., 60 (2009), 246.  doi: 10.1007/s00033-008-6109-3.  Google Scholar

[33]

S.-W. Vong, T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II),, J. Differential Equations, 192 (2003), 475.   Google Scholar

[34]

T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Differential Equations, 26 (2001), 965.   Google Scholar

[35]

T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier- Stokes equations with density-dependent viscosity,, J. Differential Equations, 184 (2002), 163.   Google Scholar

[36]

T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329.  doi: 10.1007/s00220-002-0703-6.  Google Scholar

[37]

C.-J. Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacumm,, Comm. Math. Phys., 293 (2010), 279.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[6]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[13]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[16]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[17]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[18]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[20]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]